Homework III

Deadline: 2025-01-05

1. (10 pts) Recall the definition of state visitation measure

$$d^{\pi}_{\mu}(s) = \mathbb{E}_{s_0 \sim \mu} \left[d^{\pi}_{s_0}(s) \right] = \mathbb{E}_{s_0 \sim \mu} \left[(1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P} \left[s_t = s | s_0, \pi \right] \right],$$

where $(s_0, a_0, s_1, a_1, \cdots)$ is trajectory starting from initial distribution μ and then following policy π . Let T obey the geometric distribution, i.e., $\mathbb{P}[T = t] = \gamma^t (1 - \gamma), \quad t = 0, 1 \cdots$. Show that

$$\mathbb{P}\left[s_T = s\right] = d^{\pi}_{\mu}(s)$$

Then suggest a way to sample from d^{π}_{μ} .

- 2. (20 pts) Implement and test the Projected Policy Gradient method and the Softmax Policy Gradient method in Lecture 7 for the Gridworld problem in Homework I (Question 7, use $\gamma = 0.9$ and uniform distribution for μ). The action/advantage values and visitation measure in the policy gradient should be evaluated exactly based on the transition model. Display the convergence plots $(V^*(\mu) - V^k(\mu) vs \# \text{ of iterations})$ of the two algorithms in a figure. Can you observe the finite iteration convergence of the Projected Policy Gradient method?
- 3. (5 pts) Let V_{τ}^{π} and Q_{τ}^{π} be the value functions under the entropy regularization, and recall the definition of the Bellman optimality operator \mathcal{T}_{τ} in this case. Show that

$$\mathcal{T}_{\tau} V_{\tau}^{\pi}(s) - V_{\tau}^{\pi}(s) = \tau \operatorname{KL}(\pi(\cdot|s) \| \widehat{\pi}(\cdot|s)),$$

where $\widehat{\pi}(\cdot|s) \propto \exp(Q_{\tau}^{\pi}(\cdot|s)/\tau)$.

- 4. Consider the soft policy iteration algorithm in Lecture 8 (page 28).
 - (10 pts) Show the policy improvement property of the algorithm:

$$V_{\lambda}^{\pi_{k+1}}(s) \ge V_{\lambda}^{\pi_k}(s), \quad \forall s.$$

• (10 pts) Show the γ -rate convergence of the algorithm:

$$\|V_{\lambda}^* - V_{\lambda}^{\pi_k}\|_{\infty} \le \gamma^k \|V_{\lambda}^* - V_{\lambda}^{\pi_0}\|_{\infty}.$$

5. (20 pts) Reproduce the figure on page 26 of Lecture 9 for comparing different bandit algorithms.