Homework I

Deadline: 2024-10-14

. (5 pts) Show that the infinite horizon discounted state value V7 (s) has the following alterna-
tive expression:

VTF() IENNGeo 1—)

N—
E 5t7at75t+1 |50 =S|,

t=0

where Geo(1 — 7y) denotes the geometric distribution with parameter 1 — . In word, we can
rewrite V™ (s) into an undiscounted form where the length of trajectory obeys the geometric
distribution. In addition, compute E[N] which is referred to as planning horizon.

. (5 pts) Whether the optimal policy is unique? Prove or disprove by a counter example.

. (5 pts) Given any vector V € RISl let m be the greedy policy defined from V. Is it true
Vr=Vv?

. (5 pts) Let 7 be the policy extracted from the k-th iteration of the value iteration. Is it
always that V7+1(s) > V7 (s), Vs? Prove or disprove by a counter example.

. (10 pts) Write out the value iteration in terms of action values based on the related Bellman
optimality condition and show the linear convergence of the algorithm.

. (10 pts) Given a policy =, define the advantage value as follows:
A" (s,a) = Q" (s,a) — V™ (s).
Show that if A™(s,a) <0, then 7 is an optimal policy.

. (10 pts) Reproduce the figure on pg. 22 of Lecture 3 for the test of RM on root finding.

8. (20 pts)

Figure 1: GridWorld Example

Consider the gridworld problem shown in Fig. 1. Here are the basic settings:

e There are sixteen states with three obstacles (red) and one target (green).

e At each state, there are five available actions (up, down, left, right, stay). For those
states on the boundaries, if taking an action causes the agent to leave the grids, the
agent will return back. For the goal state, no matter what actions are taken, the agent
will always return back.

e The reward is -1 if the agent enters the obstacle grid, is 1 if the agent enters the goal
grid, is O for other grids.

Implement value iteration and policy iteration to find the optimal policy for this problem for
two different discount factors v = 0.9 and v = 0.5. Are the optimal policies for those two
cases the same? How can you interpret your observation?

The sample codes are provided (only) for the first time for asynchronous value iteration, see
them attached (correctness is not guaranteed). Indeed, you can find more sample codes in
https://github.com/boyu-ai/Hands-on-RL However, simple copy & paste will not be helpful
at all.

File - /Users/kewei/Teaching/Codes/hw1.py

0O ~JO 01T DNWN PP

18
19
20
21
22
23
24
25
26

import numpy as np

Create environment
class GridWorld:

1:

def

def

stay

__init__(self,nrow=4, ncol=4):

self.nrow = nrow

self.ncol = ncol

self.P = self.createP() # P[s]l[a]l = [(s',r)]

createP(self):
acts = [[-1, o], [1, e], [o, -1], [e, 1], [0, 6]]

the inside [] means the entry of P is an array
P =1[[[] for j in range(5)] for i in range(self.nrowxself.ncol)]

five actions
acts[0]: up, acts[1]: down, acts[2]: left, acts[3]: right, acts[4

for i in range(self.nrow):
for j in range(self.ncol):

s=[1,7]

#print(s)

#print('=======")

for a in range(5):
sp = np.add(s,acts[a])
if sp[0]=-1 or sp[B] = self.nrow or sp[l]=-1 or sp[1l

Page 1 of 4

File - /Users/kewei/Teaching/Codes/hw1.py

26]=self.ncol or (i=2 and j=2): # boundary and goal

27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

splB]=1
spl1]=]

if i=2 and j=2: # target
#print(sp)
#print('----- ")

P[i*self.ncol+j]l[a]
elif (i=1 and j=2) or
=1): # obstacles

P[ixself.ncol+j][a]

else: # other states
#print(sp)
#print('----- ")

P[i*self.ncol+j]l[al
return P

Implement asynchronous VI
class Valuelteration:
def __init__(self, env, gamma, eps):

self.env = env

self.v = [0] * self.env.nrow * self.
self.gamma = gamma

self.eps = eps

self.pi = [None for i in range(self.

def value_iteration(self):

= [sp[0]*self.ncol+sp[1],1]
(i=2 and j = 1) or (i=3 and j

[sp[B]*self.ncol+sp[1],-1]

[sp[0]*self.ncol+sp[1],0]

env.ncol

env.nrow * self.env.ncol)]

Page 2 of 4

File - /Users/kewei/Teaching/Codes/hw1.py

52 iter = 0O

53 err_inf = float('inf')

54 while 1:

55 if err_inf < self.eps:

56 break

57

58 err_inf = 0

59 for s in range(self.env.nrow * self.env.ncol):

60 new_vs = float('-inf')

61 for a in range(5):

62 # print(self.env.P[s][a])

63 sp, r = self.env.P[s][al]

64 gsa = r + self.gamma * self.v[sp]

65 if gsa = new_vs:

66 new_vs = (sa

67 self.pi[s] = a

68 # new_vs = max(new_vs,qsa)

69

70 err_inf = max(err_inf, abs(new_vs - self.v[s]))
71 self.v[s] = new_vs

72

73 iter += 1

74 print('Iter: %d' % iter, 'Error: %.4f' % err_inf)
75

76 def print_pi(self):

77 action = ['~', 'v', '<', '>', '0']

78 policy = np.empty((self.env.nrow, self.env.ncol), dtype=object)

Page 3 of 4

File - /Users/kewei/Teaching/Codes/hw1.py

79 for 1 in range(self.env.nrow):

80 for j in range(self.env.ncol):

81 a = self.pi[i * self.env.ncol + j]
82 policy[i, j] = action[al

83 print(policy)

84

85 # Begin test

86 env = GridWorld()

87 eps = 0.0001

88 gamma = 0.9

89 agent = ValuelIteration(env, gamma, eps)
90

91 agent.value_iteration()

92 agent.print_pi()

Page 4 of 4

