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Problem Description

The methods discussed so far focus on solving RL problem globally in an offline
way via (approximate) dynamic programming or optimization. That is, we would
like to find a good action for every state. In contrast, online planning methods
attempt to find a good action for a single state based on reasoning about states
that are reachable from that state. The reachable state space is often orders of
magnitude smaller than the full state space, which can significantly reduce
storage and computational requirements compared to offline methods.

A typical scheme for online planning is known as receding horizon planning,
which plans from the current state to a maximum fixed horizon or depth d, then
executes the action from current state, transitions to the next state, and replans.

Materials from “Algorithms for decision making” by Kochenderfer et al., 2022



Forward Search

▶ Forward search builds a search tree with current state as root by expanding
all possible transitions up to certain depth via a MDP model, and determines
the best action at initial state by for example dynamic programming.

▶ If it requires planning beyond depth that can be computed online, one can
use estimated values obtained using offline RL methods as leaf values.

▶ In contrast, MCTS is simulation-based search which attempts to reduce
computational complexity of forward search by building a tree incrementally
based on the balance between exploration and exploitation.

Figure from “Algorithms for decision making” by Kochenderfer et al., 2022



Remark

In order to conduct search, it requires a model of environment so that sampling
and evaluation can be done repeatedly (even in online setting). While in some
applications the model is clear, there are also applications in which model
needs to be estimated and stored.

Indeed, there are RL algorithms which combines model free methods with a
model estimated from data (for example Dyna-Q). The estimated model (though
not accurate) allows us to apply RL algorithms (model based or model free)
repeatedly which can improve the efficiency of data usage.
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MAB

▶ K actions (arms): A = {1, · · · ,K}.
▶ r ∈ [0, 1] ∼ Da, unknown probability distribution
over rewards for action a.

▶ At time t, agent selects an action at, receives a
reward rt(at) ∼ Dat .

▶ Goal: Maximize cumulative reward
∑T

t=1 E [rt(at)].

▶ There are different settings of bandits, and we only discuss the simplest
stochastic setting where rewards of each action at all time steps are i.i.d.

▶ A fundamental dilemma in online planning is exploration and exploitation
tradeoff when facing uncertainty. On one hand, we want to make good
decision given current information; on the other hand, uncertainty may
mislead and thus requires to explore more decisions before making good
decision with high confidence. Overall, a good strategy should count the
uncertainty in or we should learn/use the data distribution.



MAB as RL

MAB is special RL with single state, multiple actions, and random rewards.
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SARSA/Q-Learning for MAB

Algorithm 1: SARSA/Q-Learning
Initialization: K arms, Q0(a) = 0, ∀a ∈ A
for t = 0, 1, 2, ... do

Take at ∼ ϵt-greedy(Qt(·))
Observe reward rt

Update Qt+1 (a) =

Qt (a) + αt (a) · (rt − Qt(a)) if a = at
Qt (a) otherwise

end

▶ Classic RL algorithms do not focus on the efficient action sampling at each
time step. As can be seen later, there exist more efficient algorithms for MAB.



How to Evaluate an Algorithm? Regret

▶ µa is mean reward of action a: µa = Er∼Da [r] .
▶ µ∗ = µa∗ = max

a
µa, where a∗ = argmax

a
µa is maximum mean reward.

Given a sequential of actions at up to time T, the total regret (or regret for
simplicity) is defined as the total loss:

RT =
T∑

t=1

(µ∗ − µat).

RT is a random variable, whose randomness comes from the selections of at.



Remark about Regret

▶ Regret characterizes the difference between online performance and offline
performance. In the offline setting, we want to choose an action a such that∑T

t=1 E [rt(a)] is maximized. It is clear the solution is a∗, and the regret is the
difference between offline and online cumulative rewards.

▶ Asymptotically, most algorithms can find action that is close to the best in
terms cumulative reward. Then how to compare the performance of different
algorithms? Regret provides a micro-level measure based on the loss in the
process of applying algorithms, reflecting the speed converging to optimum.



Regret Identifies Higher Order Performance Difference

For intuitive explanation, consider a non-stationary two-armed bandit problem:
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No matter which action is selected in each step, leading order of
∑T

t=1 µat is T
2.

However, regret is T if a1 is always selected while it is 0 if a2 is always selected.



Probability Tools Needed for Regret Analysis

Definition 1 (Sub-Gaussian distribution)
A random variable X with mean µ is sub-Gaussian if there exists a ν > 0 such that

E
[
eλ(X−µ)

]
≤ e

λ2ν2

2 , ∀λ ∈ R.

▶ Gaussian random variables and bounded random variables are sub-Gaussian.

Theorem 1 (Hoeffding inequality)
Let {Xk}nk=1 (E [Xk] = µ) be i.i.d sub-Gaussian with parameter ν. Then one has,

P
(∣∣∣∣∣ 1n

n∑
k=1

(Xk − µ)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt

2

2ν2

)
.

Hoeffding Inequality



Overview of Algorithms

▶ Explore-First: Try each arm N rounds first, then pull the empirically best arm.
▶ Epsilon-Greedy: In each round, with an probability ϵt, pull all the arms
uniformly at random; otherwise pull the best arm so far.

▶ UCB: Be optimism in face of uncertainty. In each round, pull the most
promising arm, and this can be done by constructing confidence intervals.



Explore-First

There are two phases in Explore-First:

▶ Exploration: Pulls all the arms N rounds;
▶ Exploitation: Pulls the arm with highest empirical mean in remaining rounds.

Algorithm 2: Explore-First
Initialization: Parameter N.
for a = 1, 2, ..,K do

Pull arm a for N rounds and collect rewards {ra,t}Nt=1

Calculate empirical mean reward µ̄a :=
1
N
∑N

t=1 ra,t
end
Select the arm â = argmax

a∈[K]
µ̄a (break ties arbitraily)

Pull arm â in all remaining T− NK rounds

Algorithm



Explore-First

The regret of Explore-First consists of two parts,

E[RT] =
∑

a̸=a∗

N (µ∗ − µa)︸ ︷︷ ︸
Regret on Exploration Phase

+ (T− NK) (E[µ∗ − µâ])︸ ︷︷ ︸
Regret on Exploitation Phase

.

The choice of N reflects tradeoff between exploration and exploitation. As N
increases, regret on exploration increases but regret on exploitation phases
decreases with high probability since both T− NK and P(â ≠ a∗) decreases.

Theorem 2 (Regret Bound of Explore-First)
Explore-First achieves the following bound when N = (T/K)

2
3 · O (log T)

1
3 ,

E [RT] ≤ T
2
3 · O (K log T)

1
3 .

Regret Analysis



Epsilon-Greedy

Algorithm 3: Epsilon-Greedy
Initialization: sequence {εt}Tt=1.
for t = 1, 2, .., T do

Denote µ̄t (a) :=
∑t−1

i=1
ri·1{ai=a}∑t−1

i=1
1{ai=a}

Toss a coin with success probability ϵt;
if success then

Explore: at ∼ U ([K])
else

Exploit: at = arg max
a∈[K]

µ̄t (a)

end
end

▶ Epsilon-Greedy is the same as SARSA/Q-Learning for MAB.

Algorithm



Epsilon-Greedy

In Epsilon-Greedy, ϵt controls balance between exploration and exploitation.
It’s natural to let ϵt decrease with t since mean reward of each arm will be
estimated more accurately with t increasing.

Theorem 3 (Regret Bound of Epsilon-Greedy)
Epsilon-Greedy achieves the following regret for every t when ϵt = t− 1

3 · (K log t)
1
3 ,

E [Rt] ≤ t
2
3 · O (K log t)

1
3 .

Regret Analysis



Optimism in Face of Uncertainty

The key idea of optimism in face of uncertainty is to select the most promising
action or the action that might have a high reward in an uncertain environment.
A random reward might be high if the mean is large or there is more uncertainty
in the reward distribution. Thus, a measure should include both information of
reward (mean) and uncertainty (more distribution information, e.g., variance).

Two outcomes of this scheme:

▶ Get high reward if the arm really has a high mean reward;
▶ For arm really having a lower mean reward, pulling it can reduce average
reward and mitigate uncertainty.



Upper Confidence Bound

UCB selects arms with highest upper confidence bound: At time step t, for each
arm a, construct the confidence interval (for a fixed confidence) of µa with radius
rt(a) based on the empirical mean µ̄t(a). Then UCB selects

at = argmax
a∈[K]

UCBt (a) := µ̄t (a) + rt (a) .

An arm can have a large UCBt(a) for two reasons (or combination thereof):

▶ µ̄t(a) is large: this arm is likely to have a high mean reward;
▶ rt(a) is large: this arm has not been explored much.

Either suggests the arm is worth selecting. Thus, µ̄t(a) and rt(a) represent
exploitation and exploration. Moreover, UCB counts in effect of finite samples.

Overall Idea



Upper Confidence Bound

Lemma 1
Let nt(a) be the number of pulling arm a at time step t. For any 0 < δ < 1, the
following equality holds with probability 1− δ:

|µ̄t (a)− µ (a)| ≤
√

1

2nt (a)
log 2

δ
.

▶ By this lemma, the UCB of arm a at time step t can be constructed as

UCBt(a) = µ̄t (a) +
√

1

2nt (a)
log 2

δ
.

Construction of Upper Confidence Bound



Upper Confidence Bound

Algorithm 4: UCB
Initialization: parameter δ
for a = 1, ...,K do

Pull arm a and collect reward ra
end
for t = 1, 2, .., T− K do

nt (a)← 1 +
∑t−1

i=1 1 {ai = a}
µ̄t (a) = 1

nt(a)
(
ra +

∑t−1
i=1 rt · 1 {ai = a}

)
UCBt (a)← µ̄t (a) +

√
1

2nt(a) log 2
δ

Select at = argmax
a∈[K]

UCBt(a)

end

▶ Typical empirical choice for δ is δ = nβt , where nt is total number of
simulations, leading to the UCB bound UCBt (a)← µ̄t (a) + C

√
log nt
2nt(a)

.

Algorithm



Upper Confidence Bound

Theorem 4 (Regret Bound of UCB)
UCB achieves the following regret for each round t ≤ T when δ = 2

T4 ,

E [Rt] ≤ O
(√

Kt log T
)
.

Regret bound for other choice of δ is also available. Moreover, the lower regret bound for stochastic
bandits is Ω(

√
KT). See “Introduction to Multi-Armed Bandits” by Slivkins 2022 for more details.

Regret Analysis



Bayesian Bandits: Probability Matching

Bayesian bandits assume {µa}Ka=1 obey a prior distribution Q(µ1, · · · , µK). Given
history Ht−1 = {(a1, r1, · · · , at−1, rt−1)}, the idea of probability matching is:

▶ Compute posterior distribution P(µ1, · · · , µK|Ht−1) by Bayes law;
▶ Compute pa = P(argmax

a∈[K]
µa = a|Ht−1) and select a with largest pa.

Compute pa from posterior P is difficult. Thompson sampling implements this by
sampling: Sample (µ1, · · · , µK) ∼ P(·|Ht−1) and choose the arm with largest µa.



Bayesian Bandits: Thompson Sampling

In the independent setting, P(µ1, · · · , µK|Ht−1) is decomposable and we can
compute the posterior of each arm independently.

Algorithm 5: Thompson Sampling
Initialization:
for t = 1, 2, .., do

Observe the history Ht−1 = {(a1, r1) , ..., (at−1, rt−1)}.
Compute posterior for each arm P (µa|Ht−1)

Sample µ̄t(a) ∼ P (µa|Ht−1)

Choose the best arm ât = argmax
a

µ̄t(a) and collect reward rt

end

▶ Thompson sampling achieves nearly optimal Bayesian regret O(
√
KT log T).

See “Introduction to Multi-Armed Bandits” by Slivkins 2022 for more details.



Bayesian Bandits: A Special Case

Consider Bernoulli reward case r|µa ∼ Bernouli (µa), where µa indicates the
probability r = 1 (also mean of r). Assume uniform prior distribution for µa,
i.e., µa ∼ U([0, 1]). Given independent random rewards r1, · · · , rn sampled for
arm a, by Bayes law, pdf for posterior distribution P(µa|r1, · · · , rn) is

p(µa|r1, · · · , rn) ∝ p(r1, · · · , rn|µa)p(µa)

=
n∏

k=1

µ
rk
a (1− µa)

1−rk = µ
∑n

k=1 rk
a (1− µa)

∑n
k=1(1−rk).

It follows that P(µa|r1, · · · , rn) = Beta(1 +m1, 1 +m2), where m1 is the number
of rewards that rk = 1 and m2 is the number of rewards that rk = 0.

▶ Note E [Beta(α, β)] = α
α+β

and U[0, 1] = Beta(1, 1). Thus, prior and posterior
distributions are in the same distribution family, known as conjugate prior.



Illustrative Example
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One-Step Policy Improvement as Stochastic MAB
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Consider the one-step policy improvement problem for state s,

argmax
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
,

where we assume state values V(s′) at s′ are available.

▶ If model P is known, we can compute expectation and then choose largest a.
▶ If P is not known, sample a and receive random reward r(s, a, s′) + γv(s′).
Equivalent to stochastic MAB problem. UCB provides a way of efficient search.



What about Multi-Step Policy Improvement?
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What about argmax
a

Est+1∼P(·|st,at)

[H−1∑
t=0

γtr(st, at, st+1) + γHV(sH)|s0 = s, a0 = a
]
?

▶ MCTS builds a search tree incrementally, conducts UCB search in each depth
and propagates optimal action values from bottom to top.



Illustration of MCTS
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▶ Expand root state s and initialize n and Q
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▶ Select action via UCB Q(s, a) + C
√

log n(s)
n(s,a) .

Assume a0 selected, transition to s1 (leaf).
Use V(s1) to update node a0 (Propagate):

n(s, a0) = n(s, a0) + 1,

r = r(s, a0, s1) + γV(s1)

Q(s, a0) =
n(s, a0)− 1

n(s, a0)
Q(s, a0) +

r
n(s, a0)

▶ Expand s1, initialize, restart search from s.

There are different versions of MCTS up to different tasks, and we only illustrate one for multi-step
policy improvement.



Illustration of MCTS
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▶ Now a1 should be selected since it has large
UCB, and transition to s2 (leaf). Use V(s2) to
update note a1:

n(s, a1) = n(s, a1) + 1,

r = r(s, a1, s2) + γV(s2)

Q(s, a1) =
n(s, a1)− 1

n(s, a1)
Q(s, a1) +

r
n(s, a1)

▶ Expand s2, initialize, restart search from s.



Illustration of MCTS
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▶ Assume a0 is again selected and transition to
s3 (leaf). Use V(s3) to update note a0:

n(s, a0) = n(s, a0) + 1,

r = r(s, a0, s3) + γV(s3)

Q(s, a0) =
n(s, a0)− 1

n(s, a0)
Q(s, a0) +

r
n(s, a0)

▶ Expand s3, initialize, restart search from s.



Illustration of MCTS
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▶ Assume a0 is again selected and transition to
s1 (not leaf). Assume from s1, a1 is selected,
transition to s4 (leaf). Use V(s4) to update
actions a1 and a0 on the path.

▶ Update a1:
n(s1, a1) = n(s1, a1) + 1,

r = r(s1, a1, s4) + γV(s4)

Q(s1, a1) =
n(s1, a1)− 1

n(s1, a1)
Q(s1, a1) +

r
n(s1, a1)

▶ Update a0:
n(s, a0) = n(s, a0) + 1,

r = r(s, a0, s1) + γr(s1, a1, s4) + γ2V(s4)

Q(s, a0) =
n(s, a0)− 1

n(s, a0)
Q(s, a0) +

r
n(s, a0)

▶ Expand s4, initialize, restart search from s.



Remark

▶ MCTS repeats this process until some termination conditions are met. Note
that we have mentioned “select”, “expand”, “propagate” in this process. There
is another operation “simulate” in MCTS when state values are not given.

▶ Using UCB to select the action, optimal actions tend to be selected more and
more asymptotically from bottom to top. Thus, MCTS is a trajectory-search
way for finding the optimal action at current state by smart sampling.



Questions?
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