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Gradient Method over Distributions

It is clear that policy optimization for RL is a special case of optimization over
probability distributions:

max
θ

J(θ) = EX∼Pθ [f(X)] .

The gradient ascent method for this problem is given by

θ+ = θ + η · ∇J(θ),

where the search direction ∆θ = ∇J(θ) satisfies

∆θ ∝ argmax
∥d∥2≤α

{J(θ) + ⟨∇J(θ),d⟩}.

Question: Is it more natural to search over probability distribution space since
J(θ) essentially relies on Pθ? YES –> Natural gradient method.



Natural Gradient over Distributions

Natural gradient method conducts search based on KL divergence between
probability distributions (F(θ)† is pseudoinverse of F(θ)):

∆θ ∝ argmax
KL(Pθ∥Pθ+d)≤α

{J(θ) + ⟨∇J(θ),d⟩}

≈ F(θ)†∇J(θ),

where F(θ) is the Fisher information matrix at θ, defined by

F(θ) = EX∼Pθ

[
∇θ logpθ(X)(∇θ logpθ(X))T

]
.

This leads to natural gradient method:

θ+ = θ + η · F(θ)†∇J(θ),

which can also be viewed as preconditioned gradient method.



Derivation of Natural Gradient Direction

Given two probability distributions P and Q with pdf p(x) and q(x) respectively,
the KL divergence is defined by

KL(P∥Q) = EP
[
log dPdQ

]
= EP

[
log p(X)q(X)

]
.

It follows that

KL(Pθ∥Pθ+d) = EPθ

[
log pθ(X)

pθ+d(X)

]
= −EPθ [logpθ+d(X)− logpθ(X)]

≈ −dT EPθ

[
∇θpθ(X)
pθ(X)

]
︸ ︷︷ ︸
I1= EPθ [∇θ log pθ(X)]

−1

2
dT EPθ

[
∇2

θpθ(X)
pθ(X)

− ∇θpθ(X)(∇θpθ(X))T
pθ(X)2

]
︸ ︷︷ ︸

I2= EPθ [∇
2
θ

log pθ(X)]

d.



Derivation of Natural Gradient Direction

For I1, one has

EPθ

[
∇θpθ(X)
pθ(X)

]
=

∫
∇θpθ(X)dx = 0.

For I2, one has

EPθ

[
∇2

θpθ(X)
pθ(X)

]
=

∫
∇2

θpθ(X)dx = 0

and

EPθ

[
∇θpθ(X)(∇θpθ(X))T

pθ(X)2
]
= EPθ

[
∇θ logpθ(X)(∇θ logpθ(X))T

]
= F(θ).

It follows that

∆θ = argmax
KL(Pθ∥Pθ+d)≤α

{J(θ) + ⟨∇J(θ),d⟩} ≈ argmax
dTF(θ)d≤2α

{J(θ) + ⟨∇J(θ),d⟩} ∝ F(θ)†∇J(θ).

The pseudoinverse basically means that we won’t consider the direction such F(θ)d = 0 since in this
case one has KL

(
Pθ∥Pθ+d

)
≈ dTF(θ)d = 0 and the objective function roughly remains unchanged.



Natural Policy Gradient (NPG)

Natural policy gradient is natural gradient applied to RL optimization problem:

max
θ

Vπθ (µ) = Es0∼µ [Vπθ (s0)] = Eτ∼Pπθ
µ

[r(τ)] ,

where given τ = (st, at, rt)∞t=0,

Pπθ
µ (τ) = µ(s0)

∞∏
t=0

πθ(at|st)P(st+1|st, at) and r(τ) =
∞∑
t=0

γtrt.

Natural gradient search direction can be incorporated into different policy
optimization methods (including REINFORCE, actor-critic) after MC evaluation of
F(θ) (e.g., using data from an episode). We only focus on expression for F(θ).

By the definition of F(θ) and expression for Pπθ
µ (assuming πθ(a|s) = 1 for any θ),

F(θ) =Eτ∼Pπθ
µ

[( ∞∑
t=0

∇θ logπθ(at|st)
)( ∞∑

t=0

∇θ logπθ(at|st)
)T]

=Eτ∼Pπθ
µ

[
∞∑
t=0

∇θ logπθ(at|st)(∇θ logπθ(at|st))T
]
.



Two Common Expressions of F(θ) to Avoid Divergence

▶ Average case:

F(θ) = lim
T→∞

1

TEτ∼Pπθ
µ

[T−1∑
t=0

∇θ logπθ(at|st) (∇θ logπθ(at|st))T
]

= Es∼dπθEa∼πθ(·|s)

[
∇θ logπθ(a|s) (∇θ logπθ(a|s))T

]
,

where dπθ (s) = Es0∼µ [limt→∞ P(st = s|s0, πθ)] is state stationary distribution.
▶ Discounted case:

F(θ) = (1− γ)Eτ∼Pπθ
µ

[
+∞∑
t=0

γt∇θ logπθ(at|st)(∇θ logπθ(at|st))T
]

= Es∼dπθ
µ

Ea∼πθ(·|s)

[
∇θ logπθ(a|s) (∇θ logπθ(a|s))T

]
,

where dπθ
µ (s) = Es0∼µ

[
(1− γ)

∑∞
t=0 γ

tP(st = s|s0, πθ)
]
is discounted state

visitation measure.



Remark

▶ For the discounted case, it is not difficult to verify that the natural gradient
direction F(θ)†∇θVπθ (µ) satisfies

F(θ)†∇θVπθ (µ) =
1

1− γ
ω∗,

where ω∗ is the (ℓ2-minimal) solution to

min
ω
L(ω) = Es∼dπθ

µ ,a∼πθ(·|s)

[(
(∇θ logπθ(a|s))T ω − Aπθ (s, a)

)2
]
.

See “On the theory of policy gradient methods: Optimality, approximation, and distribution shift” by
Agarwal et al. 2021 for details.



Remark

▶ For the softmax parameterization (i.e., πθ(a|s) = exp(θs,a)/(
∑

a′ exp(θs,a′))), it
can be verified all the solutions to minω L(ω) has the following general form:

ω∗
s,a = Aπθ (s, a) + cs,

where cs is a constant relying on s. Thus NPG in policy space is given by

πθ+(a|s) =
πθ(a|s) · exp

(
η

1−γ
Aπθ (s, a)

)
∑
a′

πθ(a′|s) · exp
(

η
1−γ

Aπθ (s, a′)
) ,

which coincides with EQA in Lecture 7 (a policy mirror ascent method).

See “On the theory of policy gradient methods: Optimality, approximation, and distribution shift” by
Agarwal et al. 2021 for details.
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Trust Region Policy Optimization (TRPO)

Given a policy πθt , by performance difference lemma, we can rewrite Vπθ (µ) as

Vπθ (µ) = Vπθt (µ) +
1

1− γ
Es∼dπθ

µ
Ea∼πθ(·|s) [A

πθt (s, a)] .

Since we do not have access to dπθ
µ , instead maximize the approximation:

max
θ

Vt(θ) = Vπθt (µ) +
1

1− γ
E
s∼d

πθt
µ

Ea∼πθ(·|s) [A
πθt (s, a)].

Overall Idea



Trust Region Policy Optimization (TRPO)

▶ It is easy to see that Vπθ (µ) and Vt(θ) match at θt up to first derivative.
▶ It can be shown that

Vπθ (µ) ≥ Vt(θ)−
2γεt

(1− γ)2
max
s

KL(πθt(·|s)∥πθ(·|s)),

where εt = maxs,a |Aπθt (s, a)|.

See “Trust region policy optimization” by Schulman et al. 2017 for derivation of second fact.

Two Facts



Trust Region Policy Optimization (TRPO)

The second fact suggests that we may seek a new estimator by maximizing Vt(θ)
in a small neighborhood of θt:

max
θ

Vt(θ) subject to max
s

KL(πθt(·|s)∥πθ(·|s)) ≤ δ.

Moreover, replace constraint by the average version and instead solve

max
θ

Vt(θ) subject to E
s∼d

πθt
µ

[KL(πθt(·|s)∥πθ(·|s))] ≤ δ.

TRPO is Approximately NPG Plus Line Search



Trust Region Policy Optimization (TRPO)

After linear approximation to Vt(θ) and quadratic approximation to KL at θt,

Vt(θ) ≈ (∇θVπθt (µ))T(θ − θt), Es∼d
πθt
µ

[KL(πθt(·|s)∥πθ(·|s))] ≈
1

2
(θ − θt)

TF(θt)(θ − θt),

we arrive at the same problem as that for NPG,

max
θ

(∇θVπθt (µ))T(θ − θt) subject to 1

2
(θ − θt)

TF(θt)(θ − θt) ≤ δ.

▶ TRPO is NPG with adaptive line search in implementations.

TRPO is Approximately NPG Plus Line Search
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Proximal Policy Optimization (PPO)

Recall from last section that

Vt(θ) ∝ E
s∼d

πθt
µ

Ea∼πθ(·|s) [A
πθt (s, a)]

= E
s∼d

πθt
µ

Ea∼πθt (·|s)

[
πθ(a|s)
πθt(a|s)

Aπθt (s, a)
]
,

serves as a surrogate function of true target in small region around θt.

PPO keeps new policy close to old one through clipped objective.



PPO with Clipped Objective

Let r(θ) = πθ(a|s)
πθt (a|s)

. Then r(θt) = 1. The clipped objective function is given by

Vclipt (θ) = E
s∼d

πθt
µ

Ea∼πθt (·|s)

[
min

(
r(θ)Aπθt (s, a), clip (r(θ), 1− ϵ, 1 + ϵ) Aπθt (s, a)

)]
,

where

clip (r(θ), 1− ϵ, 1 + ϵ) =


1 + ϵ, r(θ) > 1 + ϵ,

r(θ), r(θ) ∈ [1− ϵ, 1 + ϵ],

1− ϵ, r(θ) < 1− ϵ.

▶ The min operation ensure Vclipt (θ) provides a lower bound. Since a maximal
point will be computed subsequently, min will not cancel the effect of clip.

▶ PPO policy update (in expectation): θt+1 = argmaxθ V
clip
t (θ).

▶ In flat region, gradient of Vclipt (θ) is zero, thus won’t move far from θt is using
policy gradient type method to solve the sub-problem.

See “Proximal policy optimization algorithms” by Schulman et al. 2017 for details.
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Entropy Regularized State Value

Given a policy π, the average entropy regularized state value is given by

Vπτ (µ) =
1

1− γ
Es∼dπµ

{
Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)

]
+ τH(π(·|s))

}
=

1

1− γ
Es∼dπµEa∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)− τ logπ(a|s)

]
= E

[
∞∑
t=0

γt (r(st, at, st+1)− τ logπ(at|st)) | s0 ∼ µ, π

]
,

where H(p) =
∑

a pa logpa is the entropy of a probability distribution.

▶ Entropy regularized state value at s, denoted Vπτ (s), can be similarly defined.
▶ In addition to the perspective based on entropy regularization for more
exploration, it can also be interpreted as encouraging exploration via revising
the reward (the third equation).

In this section, we will use τ to denote the regularization parameter, which should be distinguished
from the trajectory.



Bellman Equation and Operator

It is clear that Vπτ (µ) satisfies the following Bellman equation

Vπτ (s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′)− τ log(a|s) + γVπτ (s′)

]
.

Define the Bellman operator as follows

T π
τ V(s) = Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)− τ log(a|s) + γV(s′)

]
.

It is easy to see that T π
τ is of γ-contraction and Vπτ is a fixed point of T π

τ .



Entropy Regularized Action Value

The entropy regularized action value is defined as

Qπ
τ (s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γVπτ (s′)

]
.

Note that we choose not to include −τ logπ(a|s) here. One immediately has

Vπτ (s) = Ea∼π(·|s) [Qπ
τ (s, a)− τ logπ(a|s)] .

▶ Action value is state value where initial policy is deterministic, thus entropy 0.
▶ It is convenient to give the maximum improvement policy (similar to PI
policy). That is, the solution to

max
π

T π
τ V(s) = max

π
Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)− τ log(a|s) + γV(s′)

]
is π(·|s) ∝ exp(QV(s, ·)/τ), where QV(s, a) = Es′∼P(·|s,a) [r(s, a, s′) + γV(s′)].
Entropy regularization moves the maxima to the interior so that it has an
explicit solution in terms of softmax representation.



Performance Difference Lemma

Define the advantage function

Aπτ (s, a) = Qπ
τ (s, a)− τ logπ(a|s)− Vπτ (s).

It is evident that Ea∼π(·|s) [Aπτ (s, a)] = 0.

Lemma 1
One has

T π1
τ Vπ2

τ (s)− Vπ2
τ (s) = Ea∼π(·|s) [Aπτ (s, a)]− τKL(π1(·|s)∥π2(·|s)).

Lemma 2 (Performance Difference Lemma)
There holds

Vπ1
τ (µ)− Vπ2

τ (µ) =
1

1− γ

∑
s
dπ1
µ (s) (T π1

τ Vπ2
τ (s)− Vπ2

τ (s)) .



Optimality

Define the Bellman optimality operator Tτ as follows:

TτV(s) = max
π

Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′)− τ log(a|s) + γV(s′)

]
.

Then Tτ is monotone and γ-contraction with respect to ∥ · ∥∞.

Theorem 1 (Optimality)
Let V∗τ be the solution to the Bellman optimality equation TτV(s) = TτV(s). Then

V∗τ (s) = max
π

Vπτ (s).

Moreover, there exists an optimal policy π∗ such that Vπ∗
τ = V∗τ .



Optimality

Proposition 1
Define Q∗

τ (s, a) = Es′∼P(·|s,a) [r(s, a, s′) + γV∗τ (s′)] . It is evident that

Q∗
τ (s, a) = max

π
Qπ

τ (s, a), ∀s, a.

Moreover, one has π∗(·|s) ∝ exp (Q∗
τ (s, ·)/τ) and

V∗τ (s) = Q∗
τ (s, a)− τ logπ∗(a|s) ⇔ A∗τ (s, a) = 0, ∀a.

▶ Recall that for the non-regularized case, one has A∗(s, a) ≤ 0, ∀a. Moreover,
A∗τ (s, a) = 0, ∀a guarantees Ea∼π∗(·|s) [A∗τ (s, a)] = 0 even π∗(·|s) > 0, ∀a.

Lemma 3 (Sub-Optimality Lemma)
There holds

V∗τ (µ)− Vπτ (µ) =
τ

1− γ

∑
s
dπ
µ(s)KL(π(·|s)∥π∗(·|s)).



Reverse Direction

Theorem 2
If

V(s) = Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
− τ logπ(a|s), ∀s, a,

then V = V∗τ and π = π∗
τ .

Proof. Taking expectation with respect to π(·|s) on both sides yields V = Vπτ .
Thus, V is a value function. By Lemma 5 in Lecture 7, the condition also means

π(·|s) = argmax
π̃(·|s)

Ea∼π̃(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
− τ log π̃(a|s),

which implies TτV(s) = V(s).

▶ This result essentially states that if Aπτ (s, a) = 0,∀ s, a, then π is the optimal
policy. It is parallel to the non-regularized case: if Aπ(s, a) ≤ 0, ∀ s, a, then π

is an optimal policy.



Remark

▶ The optimal policy is unique with entropy regularization.
▶ It is evident that as τ → 0, π∗

τ (a|s) → 0 for a ̸∈ argmaxQ∗(s, a).
▶ Since one has

max
a
Q∗

τ (s, a) ≤ τ log
(
∥exp (Q∗

τ (s, ·) /τ)∥1
)
≤ τ log |A|+ max

a
Q∗

τ (s, a),

it is easy to see that V∗τ (s) → maxa Q∗(s, a) = V∗(s) as τ → 0.



Soft Policy Iteration

Soft Policy Iteration:

πk+1(·|s) = argmax
π

T π
τ Vπkτ =

exp
(
Qπk

τ (s, ·)/τ
)

∥ exp
(
Qπk

τ (s, ·)/τ
)
∥1

.

▶ γ-rate convergence, with local quadratic convergence.

“Elementary Analysis of Policy Gradient Methods” by Jiacai Liu, Wenye Li, and Ke Wei, 2024.



Policy Gradient Theorem

Theorem 3 (Policy Gradient Theorem)
Assume ∀θ,

∑
a πθ(a|s) = 1 for simplicity. One has

∇Vπθ
τ (µ) =

1

1− γ
Es∼dπθ

µ
Ea∼πθ(·|s) [A

πθ
τ (s, a)∇θ logπθ(a|s)] .

▶ For softmax parameterization,

∇θsVπθ
τ (µ) =

dπθ
µ (s)
1− γ

πθ(·|s)Aπθ
τ (s, ·).



Policy Gradient Methods

▶ Entropy softmax PG: in the parameter space,

θ+s,a = θs,a + η
dπθ
µ (s)
1− γ

πθ(a|s)Aπθ
τ (s, a).

In the policy space,

π+
s,a ∝ πs,a exp

(
η
dπ
µ(s)

1− γ
πθ(a|s)Aπθ

τ (s, a)
)
.

▶ Entropy softmax NPG, in the parameter space,

θ+s,a = θs,a +
η

1− γ
Aπθ
τ (s, a).

In the policy space,

π+
s,a ∝ πs,a exp

(
η

1− γ
Aπτ (s, a)

)
∝ (πs,a)

1− ητ
1−γ exp

(
η

1− γ
Qπ

τ (s, a)
)
.

For linear convergence of entropy softmax PG and NPG, see “On the Global Convergence Rates of
Softmax Policy Gradient Methods” by Jincheng Mei et al., 2020 and “Fast global convergence of natural
policy gradient methods with entropy regularization” by Cen et al., 2022.
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Deterministic Policy Parameterization

Consider the case where S and A are continuous, and use πθ to denote a
deterministic policy: a = πθ(s) is an action.

▶ Average state value:

Vπθ (µ) =

∫
S
Vπθ (s0)µ(s0)ds0 = Eτ∼pπθ

µ

[
∞∑
t=0

γtr(st, πθ(st), st+1)

]
,

where given trajectory τ = (st, πθ(st), st+1)
∞
t=0,

pπθ
µ (τ) = µ(s0)

∞∏
t=0

p(st+1|st, πθ(st))

is the probability density over τ . Note that there is no probability over action
space since πθ(s) selects a deterministic action.

▶ It is worth noting that Vπθ (s) = Qπθ (s, πθ(s)).



Deterministic Policy Parameterization

▶ Similarly, we can express Vπθ (µ) over state space

Vπθ (µ) =
1

1− γ

∫
S
dπθ
µ (s)ds

∫
S
p(s′|s, πθ(s))r(s, πθ(s), s′)ds′

=
1

1− γ
Es∼dπθ

µ
Es′∼p(·|s,πθ(s))

[
r(s, πθ(s), s′)

]
,

where dπθ
µ (s) = Es0∼µ

[
(1− γ)

∑∞
t=0 γ

tpt(s|s0, πθ)
]
is state visitation density,

and pt(s|s0, πθ) is the density over state space after transitioning t time steps.
Note there is no expectation over action space since πθ(s) is deterministic.



Deterministic Policy Gradient Theorem

Theorem 4 (Deterministic Policy Gradient Theorem)
Suppose that ∇θπθ(s) and ∇aQπθ (s, a) exist. Then,

∇θVπθ (µ) =
1

1− γ
Es∼dπθ

µ

[
∇θπθ(s)∇aQπθ (s, a)|a=πθ(s)

]
.



Proof of Theorem 4

First note that

Vπθ (s0) = Qπθ (s0, πθ(s0))

=

∫
S

(
r(s0, πθ(s0), s1) + γVπθ (s1)

)
p(s1|s0, πθ(s0))ds1.

Therefore, one has

∇θVπθ (s0) =
∫
S
∇ar(s0, a, s1)|a=πθ(s0) ∇θπθ(s0)p(s1|s0, πθ(s0))ds1

+

∫
S
r(s0, πθ(s0), s1) ∇p(s1|s0, a)|a=πθ(s0) ∇θπθ(s0)ds1

+ γ

∫
S
Vπθ (s1) ∇p(s1|s0, a)|a=πθ(s0) ∇θπθ(s0)ds1

+ γ

∫
S
∇θVπθ (s1)p(s1|s0, πθ(s0))ds1.



Proof of Theorem 4 (Cont’d)

Moreover, it is easy to verify that the sum of the first three terms is equal to

∇θπθ(s0) ∇aQπθ (s, a)|a=πθ(s0) .

Therefore,

∇θVπθ (s0) = ∇θπθ(s0) ∇aQπθ (s, a)|a=πθ(s0) + γ

∫
S
∇θVπθ (s1)p(s1|s0, πθ(s0))ds1

= ...

= E
[ ∞∑
t=0

γt∇θπθ(st)∇aQπθ (st, a)|a=πθ(st)|s0, πθ

]
=

1

1− γ
Es∼dπθ

s0

[
∇θπθ(s)∇aQπθ (s, a)|a=πθ(s)

]
.

Averaging over all s0 completes the proof of Theorem 1.



Deep Deterministic Policy Gradient (DDPG)

▶ DDPG is a policy gradient method which learns a deterministic policy πθ and
an action value function Qω(s, a) ≈ Qπθ (s, a). It is an actor-critic algorithm.

▶ Policy of DDPG is deterministic, need to add random noisy when collecting
data; experience replay buffer is also used to break statistical dependence.

▶ Update of ω for action value function is overall the same to Fitted Q-learning.

See “Continuous control with deep reinforcement learning” by Lillicrap et al. 2016 for details.



Questions?
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