
Algorithmic and Theoretical Foundations of RL

Value Function Approximation

Ke Wei
School of Data Science
Fudan University

Motivation

▶ We have assumed a tabular representation for value functions until now
• Every state s has a Vπ(s) or every state-action pair (s, a) has a Qπ(s, a)

▶ Problem with large MDPs
• Enormously many states/actions or continuous state/action space
• Inefficient to learn every state/action value individually

▶ Solution: Value function approximation (reduction of problem dimension)

Value Function Approximation (VFA)

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

Approximately represent state/action values with functions

Vπ(s) ≈ V(s;ω) or Qπ(s, a) ≈ Q(s, a;ω)

▶ Learn parameter ω instead of state/action value directly
▶ Generalize from seen states/actions to unseen states/actions

Which Functions?

▶ Many possible function approximation methods including
• Linear function approximation
• Neural networks
• Decision trees
• Nearest neighbors
• Fourier/wavelet bases

▶ This lecture focuses on functions that are differentiable, in particular
• Linear functions:

V (s;ω) = ϕ(s)Tω or Q(s, a;ω) = ϕT(s, a)ω,

where ϕ(s) and ϕ(s, a) are feature vectors at s and (s, a), respectively.
• Neural networks:

V (s;ω) = NNω (s) or Q(s, a;ω) = NNω(s, a),

where NNω represents a neural network with weights ω.

Table of Contents

Policy Evaluation with VFA

Learning with Linear VFA

Deep Q-Learning

Overall Idea

Given π, assume Vπ(s) is given. Under VFA Vπ(s) ≈ V(s;ω), one way to find a
good ω is by solving

min
ω
J(ω) = Es∼D

[
(V(s;ω)− Vπ(s))2

]
,

where D is a distribution on S . Here we consider ∥ · ∥2-norm, but there are other
options. Stochastic gradient descent (SGD) method for solving this problem is

ωt+1 = ωt + αt · (Vπ(s)− V(s;ωt))∇ωV(s;ωt).

We restrict our attention on state values while the discussion for action values is similar.

Optimization with Oracle

Overall Idea

When Vπ(s) is unknown, we may replace it by a statistical estimation.

▶ MC policy evaluation with VFA: Letting G(s) (unbiased estimator of Vπ(s)) be
discounted return calculated starting from s following an episode sampled
from π, then the update becomes

ωt+1 = ωt + αt · (G(s)− V(s;ωt))∇ωV(s;ωt).

▶ TD policy evaluation with VFA: Given (s, a, r, s′) ∼ π, use r+ γ · V(s′;ωt) to
estimate Vπ(s) (biased). Then the update becomes

ωt+1 = ωt + αt · (r+ γ · V(s′;ωt)− V(s;ωt))∇ωV(s;ωt).

Iteratively refining target is key feature of RL methods, differing from supervised learning methods.

Optimization with Oracle

Other Perspectives for TD Evaluation with VFA

Recall that Bellman iteration for state values has the form

Vt+1 = T πVt, where [T πV](s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
.

Given V(:;ωt), since T πV(:;ωt) may not equal to some V(:;ωt+1), it is natural to
seek ωt+1 by solving

ωt+1 = argmin
ω

Es∼D
[
(V(s;ω)− [T πV](s;ωt))2

]
= argmin

ω
Es∼DEa∼π(·|s)Es′∼P(·|s,a)

[
(V(s;ω)− (r(s, a, s′) + γV(s′;ωt))2

]
.

Solving it via one-step SGD yields TD Evaluation with VFA.

Approximate Bellman Iteration

Other Perspectives for TD Evaluation with VFA

Recall the goal is to find an ω such that V(:;ω) ≈ Vπ . Since Vπ satisfies Bellman
equation T πVπ = Vπ , it is natural to find the desirable ω by minimizing

Es∼D∥V(s;ω)− [T πV](s;ω)∥22,

which is known as Bellman error (BE) and can be optimized without knowing Vπ

in contrast to J(ω).

▶ BE can be defined under different norms. Under infinity norm, one has

∥V− Vπ∥∞ ≤
∥V− T πV∥∞

1− γ
.

▶ BE can be similarly defined for Bellman optimality operator T as well as for
action values in the same fashion, which is useful in interpreting Q-learning.

Semi-Gradient for Optimizing Bellman Error

Other Perspectives for TD Evaluation with VFA

SGD for minimizing BE is (neglecting evaluation of T π for conceptual clarity)

ωt+1 = ωt + αt([T πV](s;ωt)− V(s;ωt))∇w
(
V(s;ωt)− [T πV](s;ωt)

)
.

It is not easy to compute ∇wT πV(s;ωt). TD(0) with VFA replaces T πV(s;ω) by
T πV(s;ωt) in objective function, and thus the term ∇w[T πV](s;ωt) vanishes. This
known as semi-gradient and resembles iterative reweighted scheme for solving
nonlinear least squares. Note that due to the replacement, the iterate may not
exact minimizing Bellman error, but some projected Bellman error.

Semi-Gradient for Optimizing Bellman Error

Linear Representation of State Values

V(s;ω) = ϕ(s)Tω, where ω ∈ Rn and ϕ(s) =


ϕ1(s)
ϕ2(s)
...

ϕn(s)

 ∈ Rn =⇒ ∇ωV(s;ω) = ϕ(s)

▶ If ϕ(s) = es ∈ R|S| for every s ∈ S , it reduces to the tabular representation;
that is, represent each state value individually.

MC Policy Evaluation with Linear VFA

Algorithm 1: MC policy evaluation with linear VFA
Initialization: ϕ(s), ω = ω0, policy π to be evaluated
for k = 0, 1, 2, ... do

Initialize s0 and sample an episode following π:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ π

G← 0

for t = T− 1, T− 2, ..., 0 do
G← γ · G+ rt
if st does not appear in (s0, · · · , st−1) then

ω = ω + αk,t

(
G− ϕ(st)Tω

)
ϕ(st)

end
end

end

TD Policy Evaluation with Linear VFA

Algorithm 2: TD(0) policy evaluation with linear VFA
Initialization: ϕ(s), ω0, policy π to be evaluated and initial state s0
for k = 0, 1, 2, ... do

Sample a tuple (st, at, rt, st+1) ∼ π from st
ωt+1 = ωt + αt

(
rt + γ · ϕ(st+1)

Tωt − ϕ(st)Tωt
)
ϕ(st)

end

Table of Contents

Policy Evaluation with VFA

Learning with Linear VFA

Deep Q-Learning

Policy Evaluation of Actions Values with VFA

With an oracle for Qπ(s, a), we can form the following optimization problem

min
ω
J(ω) = E(s,a)∼D

[
∥Q(s, a;ω)− Qπ(s, a)∥22

]
.

The SGD for this problem is given by

ωt+1 = ωt + αt · (Qπ(s, a)− Q(s, a;ωt))∇ωQ(s, a;ωt).

Sample a tuple (s, a, r, s′, a′). We can estimate Qπ(s, a) by r+ γ · Q(s′, a′;ωt),
yielding the update

ωt+1 = ωt + αt · (r+ γ · Q(s′, a′;ωt)− Q(s, a;ωt))∇ωQ(s, a;ωt).

Similarly, there are also different perspectives for the update.

Linear VFA of Action Values

In linear VFA for action values, we have

Q(s, a;ω) = ϕ(s, a)Tω, where ω ∈ Rn and


ϕ1(s, a)
ϕ2(s, a)

...
ϕn(s, a)

 ∈ Rn.

It is clear that ∇ωQ(s, a;ω) = ϕ(s, a).

SARSA with Linear VFA

Algorithm 3: SARSA with Linear VFA
Initialization: ϕs,a, s0, π0, a0 ∼ π0(·|s0)
for t = 0, 1, 2, ... do

Sample a tuple (st, at, rt, st+1, at+1) ∼ πt from (st, at)
ωt+1 = ωt + αt

(
rt + γ · ϕ(st+1, at+1)

Tωt − ϕ(st, at)Tωt
)
ϕ(st, at)

Update policy of visited state via ϵt-greedy:

πt+1(a|st) =

1− ϵt +
ϵt
|A| if a = argmax

a′
ϕ(st, a′)Tωt+1,

ϵt
|A| otherwise.

end

Q-Learning with Linear VFA

In Q-learning Q(s, a;ω) is used to approximate Q∗(s, a). Having a transition
(st, at, rt, st+1) ∼ bt, we can construct rt + γ ·max

a
Q (st+1, a;ωt) as a better

estimation of Q∗(st, at) than Q(st, at;ωt) since one-step lookahead reward rt is
accurate (or approximate error is discounted by γ), and update ωt via

ωt+1 = ωt + αt
(
rt + γ ·max

a
Q (st+1, a;ωt)− Q(st, at;ωt)

)
∇ωQ(st, at;ωt)

to reduce L (ω) = 1
2

(
rt + γ ·max

a
Q (st+1, a;ωt)− Q (st, at;ω)

)2

.

Algorithm 4: Q-Learning with linear VFA
Initialization: ϕ(s, a), s0
for t = 0, 1, 2, ... do

Sample a tuple (st, at, rt, st+1) ∼ bt from st where bt is a behavior policy
Update parameter

ωt+1 = ωt + αt
(
rt + γ ·max

a
ϕ(st+1, a)Tωt − ϕ(st, at)Tωt

)
ϕ(st, at)

end

Remark

▶ Both SARSA and Q-learning follow the TD target of the form [FπQ](st, at;ωt).
For SARSA, this quantity is estimated using random samples, while for
Q-learning, π is greedy and [FπQ](st, at;ωt) = [FQ](st, at;ωt).

▶ Recall that policy iteration can be viewed as updating value and policy
alternatively via policy evaluation and policy improvement. SARSA and
Q-learning can also be viewed as updating value parameter and policy
alternately. Conceptually, it is anticipated to fix policy parameter and update
value parameter extensively to fit the policy, and then update the policy
through the new parameter. However, SARSA and Q-learning with linear VFA
expands this process by policy update right after value parameter update.
This will not be a problem for simple VFA, but will cause stability issue for
complex VFA, such as the case in deep Q-learning, where target network is
introduced to fix policy parameter for a few number of iterations.

Table of Contents

Policy Evaluation with VFA

Learning with Linear VFA

Deep Q-Learning

Q-Learning with VFA as Approximate Q-Value Iteration

Recall that the Q-value iteration has the following form:

Qt+1 = FQt, where [FQ] (s, a) = Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γ ·max

a′∈A
Q
(
s′, a′

)]
.

With Qt being replaced by Q(:;ωt), there may not be a function Q(:;ωt+1) such
that Q(:;ωt+1) = FQ(:;ωt) holds exactly. We can solve for Q(:;ωt+1) via

ωt+1 = argmin
ω

E(s,a)∼D
[
(Q(s, a;ω)− [FQ](s, a;ωt))2

]
= argmin

ω
E(s,a)∼D,s′∼P(·|s,a)

[(
Q(s, a;ω)−

(
r(s, a, s′) + γ ·max

a′∈A
Q(s′, a′;ωt)

))2]
.

Solving it via one step SGD yields Q-learning with VFA.

Batch Method

Let D = {(si, ai, ri, s′i)}
n
i=1 be a batch of experience data. At time t, we can form

an sample version of E(s,a)∼D
[
(Q(s, a;ω)−FQ(s, a;ωt))2

]
and update ω by

finding a solution to the empirical risk minimization (or regression) problem

ωt+1 = argmin
ω

n∑
i=1

(
Q(si, ai;ω)−

(
ri + γ ·max

a′∈A
Q(s′i , a′;ωt)

))2
.

Solving this problem by batch SGD yields an instance of Fitted Q-Iteration.

Fitted Q-Iteration (FQI): Offline Approximate Q-Value Iteration

Algorithm 5: FQI
Initialization: Dataset D = {(si, ai, ri, s′i)}

n
i=1, initial VFA parameter ω

for t = 0, 1, 2, ... until some stopping criterion is met do
Copy parameter: ω̃ ← ω

for k = 0, 1, 2, ... until some stopping criterion is met do
Sample a mini-batch B of D
ω ← ω+α

∑
(si,ai,ri,s′i)∈B (ri + γ ·max

a′
Q(s′i , a′; ω̃)− Q (si, ai;ω))∇ωQ (si, ai;ω)

end
end

Deep Q-Learning

Deep Q-learning is a variant of FQI which uses deep neural network for VFA and
adopts incremental learning by maintaining a buffer and experience replay.

Algorithm 6: DQN
Initialization: Replay buffer D to capacity N, Q network Q(s, a;ω) with ω,
target Q network Q(s, a; ω̃) with ω̃ = ω, SGD iteration number C, k = 0, and s0
for t = 0, 1, 2, ... until some stopping criterion do

k← k+ 1

Sample a tuple (st, at, rt, st+1) ∼ bt from st and add it to buffer D
sample a mini-batch B of D
ω ← ω+α

∑
(si,ai,ri,s′i)∈B (ri + γ ·max

a′
Q(s′i , a′; ω̃)− Q (si, ai;ω))∇ωQ (si, ai;ω)

if k == C then
ω̃ ← ω

k← 0
end

end

Semi-Gradient Perspective of Deep Q-Learning

Bellman error for optimal action values with VFA can be defined in one way as

E(s,a)∼D
[
(Q(s, a;ω)− [FQ](s, a;ω))2

]
≤ E(s,a)∼D,s′∼P(·|s,a)

[(
Q(s, a;ω)−

(
r(s, a, s′) + γ ·max

a′∈A
Q(s′, a′;ω)

))2]
.

Given batch data D = {(si, ai, ri, s′i)}
n
i=1, we can find optimal ω by solving

min
ω

n∑
i=1

(
Q(si, ai;ω)−

(
ri + γ ·max

a′∈A
Q(s′i , a′;ω)

))2
.

When applying batch SGD to solve this problem, we not only need to consider
gradient with respect to ω in Q(si, ai;ω) but also in max

a′∈A
Q(s′i , a′;ω). Thus, deep

Q-learning applied semi-gradient method to solve this problem, where target
network can also be interpreted as fixing the parameter (or equivalently the TD
target) in max

a′∈A
Q(s′i , a′;ω) for a few iterations during the training process.

Practical Tricks

In addition to experience replay (for breaking dependence) and target network
(for improving stability), there are also other tricks in deep Q-learning,

▶ Deep double Q-learning
▶ Prioritized replay
▶ Dueling networks
▶ Clip gradients or use Huber loss on Bellman error
▶ · · · · · ·

Questions?

	Policy Evaluation with VFA
	Learning with Linear VFA
	Deep Q-Learning

