
Algorithmic and Theoretical Foundations of RL

Temporal-Difference (TD) Learning

Ke Wei
School of Data Science
Fudan University

Table of Contents

TD Policy Evaluation (Prediction)

TD Learning (Control)

Recap

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

▶ Model-based evaluation: Solve Bellman equation accurately based on model;
▶ MC evaluation: Value estimation via sample mean;
▶ TD evaluation: Solve Bellman equation in a stochastic and online manner.

TD(0) Policy Evaluation from Perspective of RM Algorithm

For a policy π, recall that the Bellman equation is given by

Vπ(s) = [T πVπ](s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γVπ(s′)

]
, s ∈ S.

The Bellman iteration for computing Vπ(s) is given by

Vt+1(s) = Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γVt(s′)

]
= Vt(s) + αt(s)

(
Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γVt(s′)

]
− Vt(s)

)
, s ∈ S.

Given samples {(s, a, s′)}s∈S , RM replaces expectation by r(s, a, s′) + γVt(s′),

Vt+1(s) = Vt(s) + αt(s)
(
r(s, a, s′) + γVt(s′)− Vt(s)

)
, s ∈ S.

▶ Need to repeatedly sample from every s simultaneously? Online update.

TD(0) Policy Evaluation

Algorithm 1: TD(0) Policy Evaluation

Initialization: V0(s) = 0 ∀ s ∈ S , target policy π and initial state s0.
for t = 0, 1, 2, ... do

Sample a tuple (st, at, rt, st+1) ∼ π from st
Vt+1 (st) = Vt (st) + αt(st)

(
rt + γVt(st+1)− Vt(st)

)
end

▶ TD(0) is a stochastic and online Bellman iteration. Note that at st, only a short
episode is provided and there is no future information. TD complements the
missing information in depth using an estimate of the next state value from
previous iteration instead of the true next state value.

▶ At time t, only the value of the visited state st is updated whereas the values
of the unvisited states remain unchanged (or updated using stepsize 0). If a
trajectory terminates, may need to restart the algorithm.

▶ rt + γVt(st+1) is referred to as TD target while δt = rt + γVt(st+1)− Vt(st) is
referred to as TD error. Note that rt + γVt(st+1) is an unbiased estimator of
T πVt(st), but a biased estimator of Vπ(st) since Vπ(st+1) ̸= Vt(st+1).

MC vs TD(0)

▶ MC evaluation:
• model-free, first visit estimator is unbiased for Vπ(st);
• high variance: return relies on many random actions, transitions, rewards;
• does not exploit MDP structure;
• learns from complete episodes, no bootstrapping based on estimates that
are already learned.

▶ TD(0) evaluation:
• model free, TD target rt + γVt(st+1) is biased for Vπ(st);
• lower variance: TD target relies on one random action, transition, reward;
• exploits MDP structure, usually more efficient;
• learns from incomplete episodes (after every time step) by bootstrapping.

n-Step TD Policy Evaluation

For a policy π and n ∈ N+, define (T π)n as

[(T π)nV] (s) = Eπ

[n−1∑
k=0

γkrk + γnV (sn) |s0 = s
]
.

Lemma 1
For any policy π, (T π)n is a contraction with factor γn. Moreover, Vπ is a fixed point
of (T π)n, i.e., (T π)nVπ = Vπ .

The fixed point iteration for computing Vπ based on (T π)n is given by

Vt+1(s) = [(T π)nVt](s) = Eπ

[n−1∑
k=0

γkrk + γnVt (sn) |s0 = s
]

= Vt(s) + αt(s)
(
Eπ

[n−1∑
k=0

γkrk + γnVt (sn) |s0 = s
]
− Vt(s)

)
, s ∈ S.

n-Step TD Policy Evaluation

Given an episode (s0, a0, r0, s1, a1, r1, · · · , sn−1, an−1, rn−1, sn) ∼ π with s0 = s.
Define the n-step return as

Gn(s) =
n−1∑
k=0

γkrk + γnVt (sn) .

It is easy to see that Gn(s) is unbiased estimator of (T π)nVt(s). The n-step TD
method is a stochastic and online Bellman iteration associated with (T π)nVt(s):

Vt+1(s) = Vt(s) + αt(s)
(
Gn(s)− Vt(s)

)
.

n-Step TD Policy Evaluation

▶ Information may propagate back slowly in TD(0); while in MC information
propagates faster, but the updates are noisier;

▶ n-step TD goes between TD and MC by looking n steps into the future. MC can
be seen as∞-step TD.

“Reinforcement learning: an Introduction” by Sutton and Barto, 2018.

Remark

The definition of (T π)n coincides with applying T π repeatedly n times. For
simplicity, consider the case n = 2:

[T π(T πV)](s)
= Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γ[T πV](s′)

]
= Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γEa′∼π(·|s′)Es′′∼P(·|s′,a′)

[
r(s′, a′, s′′) + γV(s′′)

]]
= Eπ[r(s, a, s′) + γr(s′, a′, s′′) + γ2V(s′′)]
= [(T π)2V](s).

Noting that (T π)nV→ Vπ when n→ ∞, compared TD(0) which follows target
T πV, n-step TD follows target that is more accurate (thus less biased). However,
variance estimating (T π)nV using random samples is higher that estimating
T πV. To this end, TD(λ) seeks a bias-variance tradeoff by combining all n-step
TD target in a suitable way.

TD(λ) Policy Evaluation

For a policy π, define the TD(λ) operator (T π)λ as

(T π)λ := (1− λ)
∞∑
n=1

λn−1(T π)n,

which is a weighted average of (T π)n.

Lemma 2
For any policy π, (T π)λ is a contraction with factor:

(1− λ) γ

1− λγ
∈ (0, γ] .

Moreover, Vπ is a fixed point of (T π)λ, i.e., (T π)λVπ = Vπ .

The fixed point iteration for computing Vπ based on (T π)λ is given by

Vt+1(s) = (1− λ)

∞∑
n=1

λn−1(T π)nVt(s)

= Vt(s) + αt(s)
(
(1− λ)

∞∑
n=1

λn−1(T π)nVt(s)− Vt(s)
)
, s ∈ S.

TD(λ) Policy Evaluation

Given a trajectory (s0, a0, r0, s1, a1, r1, · · ·) ∼ π with s0 = s, define the λ-return as

Gλ(s) = (1− λ)
∞∑
n=1

λn−1Gn(s).

Then Gλ(s) is an unbiased estimator of (T π)λVt(s). The TD(λ) method is a
stochastic and online Bellman iteration associated with (T π)λ:

Vt+1(s) = Vt(s) + αt(s)
(
Gλ(s)− Vt(s)

)
.

Here we only discuss the forward-view of TD(λ) which seems to suggest λ-return can only be
computed from complete episodes. There is a backward-view of TD(λ) which provides the mechanism
to update in online manner, see “Reinforcement learning with replacing eligibility traces” by Singh and
Sutton, 1996.

TD(λ) Policy Evaluation

Gλ(s) = (1− λ)

∞∑
n=1

λn−1Gn(s) = (1− λ)

∞∑
n=1

λn−1

(n−1∑
k=0

γkrk + γnVt (sn)
)

= (1− λ)
∞∑
k=0

∞∑
n=k+1

λn−1γkrk + (1− λ)
∞∑
n=1

λn−1γnVt (sn)

=

∞∑
t=0

(λγ)trt + γ

∞∑
n=0

λnγnVt(sn+1)−
∞∑
n=1

λnγnVt(sn)

=
∞∑
k=0

(λγ)k
(
rk + γVt(sk+1)− Vt(sk)︸ ︷︷ ︸

δk

)
+ Vt(s).

▶ If λ = 0, Gλ(s) = r0 + γVt(s1). That is why one-step TD is called TD(0).
▶ If λ → 1, Gλ(s) →

∑∞
k=0 γ

krk. Thus MC evaluation is also known as TD(1).

More on Gλ(s)

Table of Contents

TD Policy Evaluation (Prediction)

TD Learning (Control)

TD Policy Evaluation of Action Values

While we focus on TD evaluation of state values, the TD evaluation of action
values/Q-values can be similarly derived. The Bellman equation for Q-values is

Qπ(s, a) = [FπQπ](s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γEa′∼π(·|s′)

[
Qπ(s′, a′)

]]
= Es′∼P(·|s,a)Ea′∼π(·|s′)

[
r(s, a, s′) + γQπ(s′, a′)

]
, (s, a) ∈ S ×A.

The Bellman iteration for computing Q-values is given by

Qt+1(s, a) = Es′∼P(·|s,a)Ea′∼π(·|s′)

[
r(s, a, s′) + γQt(s′, a′)

]
= Qt(s, a) + αt(s, a)

(
Es′∼P(·|s,a)Ea′∼π(·|s′)

[
r(s, a, s′) + γQt(s′, a′)

]
− Qt(s, a)

)
.

Given a random sample (s, a, r, s′, a′), the RM algorithm is

Qt+1(s, a) = Qt(s, a) + αt(s, a)
(
r(s, a, s′) + γQt(s′, a′)− Qt(s, a)

)
.

TD(0) evaluation of actions values implements this in an online manner.

SARSA: On Policy TD Learning

Algorithm 2: SARSA
Initialization: Q0(s, a) = 0, s0, π0, a0 ∼ π0(·|s0)
for t = 0, 1, 2, . . . do

Sample a tuple (st, at, rt, st+1, at+1) ∼ πt from (st, at)
Qt+1 (st, at) = Qt (st, at) + αt (st, at)

(
rt + γQt (st+1, at+1)− Qt (st, at)

)
Update policy of visited state via ϵt-greedy:

πt+1(a|st) =

1− ϵt +
ϵt
|A| if a = argmax

a′
Qt+1(st, a′),

ϵt
|A| otherwise.

end

▶ SARSA is the abbreviation of “state-action-reward-state-action”, and it is an
on policy algorithm which updates the policy after every time step; SARSA(λ)
can also be developed based on TD(λ).

Q-Learning: Off-Policy TD-Learning

Recall that the optimal state-action values Q∗ is the fixed point of the Bellman
optimality operator F where

[FQ] (s, a) = Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γ · max

a′∈A
Q
(
s′, a′

)]
, (s, a) ∈ S ×A.

It can be shown that F is a contraction with factor γ. Assuming the model
(probability transition model) is known we can find Q∗ via Q-value iteration:

Qt+1(s, a) = [FQt](s, a)
= Qt(s, a) + αt(s, a)([FQt](s, a)− Qt(s, a)), (s, a) ∈ S ×A.

Q-learning is a model free and online implementation of Q-value iteration:
Sample a tuple (s, a, r, s′) via a behavior policy, noting that

r+ γ · max
a′∈A

Qt
(
s′, a′

)
is an unbiased estimator of FQt (s, a), we can update action-value at (s, a) by

Qt+1 (s, a) = Qt (s, a) + αt (s, a)
(
r+ γ · max

a′∈A
Qt
(
s′, a′

)
− Qt (s, a)

)
.

Q-Learning: Off-Policy TD-Learning

Algorithm 3: Q-Learning
Initialization: Q0(s, a) = 0, s0
for t = 0, 1, 2, . . . do

Sample a tuple (st, at, rt, st+1) ∼ bt from st, where bt is a behavior policy
Update Q-value at visited state-action pair (st, at):

Qt+1 (st, at) = Qt (st, at)+αt (st, at)
(
rt + γ · max

a′∈A
Qt
(
st+1, a′

)
− Qt (st, at)

)
end

Remark

▶ Q-Learning is off-policy since the behavior policy is different with the target
policy (explicitly expressed via Qt). It does not require importance sampling
since behavior policy only play the role of selecting which state-action pairs
will be updated, or it does not need to sample at+1 for the evaluation of
maxa′ Qt(st+1, a′), or the action at+1 = argmaxa′ Qt(st+1, a′) is sampled from
the greedy target policy and Ea′∼π(·|st+1)

[
Qt(st+1, a′)

]
= Qt(st+1, at+1) is

evaluated exactly.

Remark

▶ In population version, both SARSA and Q-learning follow policy evaluation
(via one-step Bellman iteration) and policy improvement update rule:

Q→ π → FπQ→ π′

For Q-learning, extracted policy (not defined explicitly) is greedy thus
FπQ = FQ. For SARSA, since state-action pairs are collected following target
policy, to enhance exploration, we need to modify target policy from greedy
one to ϵ-greedy one. In this case, FπQ ̸= FQ.

Illustrative Example

0 2000 4000 6000 8000 10000

20

15

10

5

0

5

Av
er

ag
e

va
lu

e
ov

er
 1

0
ra

nd
om

 st
at

es

SARSA (= 0.1)
Q-Learning (= 0.1)
SARSA (= 0.5)
Q-Learning (= 0.5)
SARSA (= 1)
Q-Learning (= 1)
Optimal

For the 10 × 10 gridworld problem mentioned in Lecture 4. Stepsize is set to 0.1 in SARSA and
Q-learning.

Double Q-Learning

In Q-learning, Qt(s, a) is used to approximate Q∗(s, a). Recall its main update is

Qt+1 (s, a) = Qt (s, a) + αt (s, a)
(
r+ γ · max

a′
Qt
(
s′, a′

)
− Qt (s, a)

)
.

A natural question is (after simplifying notation):
– Whether max

a
Qt (s, a) is an unbiased estimator of max

a
Q∗(s, a) if

Qt(s, a) is an unbiased estimator of Q∗(s, a)?
– The answer is No!

Motivation

Double Q-Learning

Lemma 3
Let {θ̂a}na=1 be unbiased estimators of {θa}na=1, respectively. Then, max

a
θ̂a is a bi-

ased estimator of max
a

θa. More precisely, there holds

E
[
max
a

θ̂a
]
≥ max

a
θa.

Example 1
Define the following two random variables:

1/2 1/2
X1 0 2
X2 1 -1

It is easy to verify that E [max(X1, X2)] > 1.

Maximization Bias

Double Q-Learning

Lemma 4
Let {θ̂Aa}na=1 and {θ̂Ba}na=1 be two independent sets of unbiased estimators of
{θa}na=1, respectively. Define a∗ = argmax

a
θ̂Aa. Then

E
[
θ̂Ba∗
]
= θa∗ ≤ max

a
θa.

▶ Double Q-learning: maintain two Q-tables, alternatively use one to select the
action to update Q-values of the other.

Solution: Double Estimator

Double Q-Learning

Algorithm 4: Double Q-Learning
Initialization: Q0,A(s, a) = Q0,B(s, a) = 0, s0
for t = 0, 1, 2, . . . do

Sample a tuple (st, at, rt, st+1) ∼ bt from st, where bt is a behavior policy
(e.g., bt is a ϵ-greedy policy with respect to (Qt,A + Qt,B)/2)
if (with 0.5 probability) then

Define a∗ = argmax
a

Qt,A (st+1, a)

Qt+1,A (st, at) = Qt,A (st, at) + αt(st, at)
(
rt + γ · Qt,B (st+1, a∗)− Qt,A (st, at)

)
else

Define b∗ = argmax
a

Qt,B (st+1, a)

Qt+1,B (st, at) = Qt,B (st, at) + αt(st, at)
(
rt + γ · Qt,A (st+1, b∗)− Qt,B (st, at)

)
end

end

Questions?

	TD Policy Evaluation (Prediction)
	TD Learning (Control)

