
Algorithmic and Theoretical Foundations of RL

Monte Carlo (MC) Learning

Ke Wei
School of Data Science
Fudan University

Policy Iteration Recap

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

Policy Iteration: greedy policy is improved via

πk+1(s) = argmax
a

Es′∼P(·|s,a)[r(s, a, s′) + γVπk(s′)]︸ ︷︷ ︸
Qπk (s,a)

,

where Vπk (s′) is evaluated via Bellman equation based on the model.
— What if system information (P and r) is not available?

— Replace model by data (model free).
— How to collect data? How to use data?

— · · · · · ·

MC Policy Evaluation (or Prediction)

Basic idea. Given π, estimate Vπ(s) and Qπ(s, a) from sampled trajectories

τi = {(si0, ai0, ri0, si1, ai1, ri1, · · ·)}ni=1 ∼ π.

▶ MC evaluation of Vπ(s): si0 = s,

Vπ(s) ≈ 1

n

n∑
i=1

(
∞∑
t=0

γtrit

)
.

▶ MC evaluation of Qπ(s, a): si0 = s, ai0 = a,

Qπ(s, a) ≈ 1

n

n∑
i=1

(
∞∑
t=0

γtrit

)
.

Action Value Based Policy Iteration

▶ Policy improvement via state value:

πk+1(s) = argmax
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γVπk(s′)

]
.

Given Vπk(s′), still need to compute the expectation which requires model.
▶ Policy improvement via action value:

πk+1(s) = argmax
a

Qπk(s, a).

Ideal for model free RL since we can estimate Qπk(s, a) directly from data.

Primitive MC Learning Algorithm

Algorithm 1: Primitive MC Learning

Initialization: π0, n
for k = 0, 1, 2, . . . do

for every s do
for every a do

Sample n episodes starting from (s, a), following πk:

τi = (si0, ai0, ri0, si1, ai1, ri1, · · · , siT−1, aiT−1, riT−1, siT) ∼ πk, i = 1, · · · ,n

Compute Qk(s, a) = 1
n
∑n

i=1

(∑T−1
t=0 γtrit

)
end
πk+1(s) = argmax

a
Qk(s, a)

end
end

Ideally, T should be∞ or sT be a terminal state. In practice, T should be sufficiently large, especially
for the sparse reward case.

Illustrative Example

O

O

O O

G

O

Goal: +10, obstacle: -10; goal is terminal state.

Illustrative Example

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

va
lu

e
ov

er
 fi

rs
t 1

0
st

at
es

T = 20
T = 10
Optimal

The learned policy is evaluated exactly using model.

Inefficiency of Primitive MC Learning

▶ A trajectory is only used for estimating one state-action value;
▶ Wait until all trajectories have been collected before policy update;
▶ Old state-action values are not reused and thus wasted (next lecture).

Table of Contents

Sample Efficient MC Policy Evaluation

MC Learning (or Control)

Off-Policy MC Learning

Use Trajectory More Efficiently

Trajectory (s0, a0, r0, s1, a1, r1, · · ·) ∼ π starting from s contains sub-trajectories
(st, at, rt, st+1, at+1, rt+1, · · ·) that starts from other states (e.g. st = s′). Thus,
return from the sub-trajectory

Gt =
∞∑
t′=t

γt
′−trt′

can be used to build an estimator of Vπ(s′). Namely, one trajectory can be used
to estimate different Vπ(s).

There is no essential difference in the MC evaluations of state value and action value in methodology.
Thus discussion in this section will be mainly based on state value.

First-Visit and Every Visit

First Visit

▶ Only sub-trajectory that starts from the first visit of s is used in the estimation
of Vπ(s); One trajectory is only used once in the evaluation of Vπ(s).

Every Visit

▶ All sub-trajectories that start from of s is used in the estimation of Vπ(s); One
trajectory might be used many times in the evaluation of Vπ(s).

First-Visit MC Policy Evaluation

Algorithm 2: First-Visit Monte Carlo Policy Evaluation
Initialization: Counter of visited numbers N(s) = 0, the total return G(s) = 0, ∀s ∈ S
for k = 0, 1, 2, . . . do

Initialize s0 and sample an episode following π:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ π

G← 0

for t = T− 1, T− 2, . . . , 0 do
G← γG+ rt
if st does not appear in (s0, s1, · · · , st−1) then

N(st)← N(st) + 1

G(st)← G(st) + G
Vfirst(st)← G(st)/N(st)

end
end

end

Every-Visit MC Policy Evaluation

Algorithm 3: Every-Visit Monte Carlo Policy Evaluation
Initialization: Counter of visited numbers N(s) = 0, the total return G(s) = 0, ∀s ∈ S
for k = 0, 1, 2, . . . do

Initialize s0 and sample an episode following π:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ π

G← 0

for t = T− 1, T− 2, . . . , 0 do
G← γG+ rt
N(st)← N(st) + 1

G(st)← G(st) + G
Vevery(st)← G(st)/N(st)

end
end

Illustrative Example

Consider policy π(a|s) = 0.5 for each
state s and each action a and γ = 0.9.
Recall that Vπ = [−0.21, 0, 0.31]T.

Consider a sampled trajectory: (s1, a1,−2, s3, a1, 1, s1, a2, 3, s3, a2,−1, s2).

▶ First-visit policy evaluation for state s3:
N(s3) = 1, Vfirst(s3) = (1 + 0.9× 3 + 0.92 × (−1)) = 2.89.

▶ Every-visit policy evaluation for state s3:
N(s3) = 2, Vevery(s3) = (1 + 0.9× 3 + 0.92 × (−1)− 1)/2 = 0.945.

First-Visit vs Every-Visit

First Visit Every Visit

MSE = bias2+variance
Un-biased Short MSE Long MSE

First visit Yes Higher Lower
Every visit No Lower Higher

“Reinforcement learning with replacing eligibility traces” by Singh and Sutton, 1996.

Illustrative Example

!"
#"=0

!&
#&=1

#(=0
π(a1|s) = p, π(a0|s) = 1− p. Set γ = 1.

State value of π at s is Vπ(s) = p
1−p .

▶ Single trajectory

E
[
Vfirst(s)

]
=

p
1− p , MSE

[
Vfirst

]
= Var

[
Vfirst

]
=

p
(1− p)2 ;

E
[
Vevery

]
(s) = p

2(1− p) , MSE
[
Vevery

]
≤ p

2(1− p)2 .

▶ As the number of trajectories increases, it can be shown that

Vevery(s)→ p
1− p .

Incremental Monte Carlo Policy Evaluation

As already seen, mean evaluation can be conducted in an incremental way:

N(st)← N(st) + 1, V(st)← V(st) +
1

N(st)
(G− V(st)).

Algorithm 4: First-Visit Monte Carlo Policy Evaluation (Incremental Version)
Initialization: Visited numbers N(s) = 0 and initialize V(s) ∀s ∈ S.
for k = 0, 1, 2, . . . do

Initialize s0 and sample an episode following π:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ π

G← 0

for t = T− 1, T− 2, . . . , 0 do
G← γG+ rt
if st does not appear in (s0, s1, · · · , st−1) then

N(st)← N(st) + 1

V(st)← V(st) + 1
N(st)

(G− V(st))
end

end
end

Without further specification, discussion in the rest of this lecture will focus on first visit, and the
superscript “first” will be omitted.

Table of Contents

Sample Efficient MC Policy Evaluation

MC Learning (or Control)

Off-Policy MC Learning

Simply Combine MC Policy Evaluation with Greedy Policy

Algorithm 5: MC Learning with Greedy Policy

Initialization: Q(s, a) = 0,N(s, a) = 0, ∀s, a; Initialize π0.
for k = 0, 1, 2, . . . do

Initialize s0 and sample an episode following πk:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ πk

G← 0

for t = T− 1, T− 2, . . . , 0 do
G← γG+ rt
if (st, at) does not appear in (s0, a0, s1, a1, . . . , st−1, at−1) then

N(st, at)← N(st, at) + 1

Q(st, at)← Q(st, at) + 1
N(st,at) (G− Q(st, at))

πk+1(a|st) =

1 if a = argmax
a

Q(st, a)

0 otherwise
end

end
end

An Example Algorithm 5 Fails to Work

𝐒𝟏 𝐒𝟐, −𝟓 𝐒𝟑

𝐒𝟒 𝐒𝟓, 𝟏𝟎 𝐒𝟔

𝑺𝟕 𝐒𝟖, −𝟓 𝐒𝟗

Consider the gridworld problem (left) where γ = 0.9. Assume Q(s, a) = 0 for all
s, a and π0 is given in the right plot. It can be verified that π0 does not change
for Algorithm 5.

Remark

How to collect data (or interaction with environment) is very important for
success of RL algorithms. We mainly consider the following intersection
protocol: Start from a state and then sample an episode following a policy
(behavior policy). Eventually, we hope the data enables us to evaluate the
action values of the target policy for all action pairs (recall that in model based
policy iteration, action values are all equally evaluated for every action (full
exploration) or the first action is independent of policy). However, the behavior
policy may bias towards some actions , for example the greedy policy. On the
one hand, collect data from a biased behavior policy may reduce the ability of
exploration. One the other hand, if the behavior policy can provide good
experiences, it should be able to provide good instruction to improve the target
policy. Thus, there is a tradeoff between exploration and exploitation.

▶ How to encourage exploration?
• Explore state-action pairs when sampling episodes.
• ϵ-greedy policy
• Off-policy learning

ϵ-Greedy Policy

With small probability ϵ randomly choose an action to ensure exploration:

π′(a|s) =

1− ϵ+ ϵ
|A| if a = argmax

a
Qπ(s, a′),

ϵ
|A| otherwise.

Theorem 1
For any policy π, the ϵ-greedy policy π′ with respect to Qπ is an improvement, i.e.,
Vπ′

(s) ≥ Vπ(s), when ϵ is sufficiently small.

Proof of Theorem 1

It suffices to show the one-step improvement of π′ over π: T π′Vπ ≥ Vπ, which is
equivalent to ∑

a
π′(a|s)Qπ(s, a) ≥

∑
a

π(a|s)Qπ(s, a) = Vπ(s).

This follows directly from∑
a

π′(a|s)Qπ(s, a) = ϵ

|A|
∑
a
Qπ(s, a) + (1− ϵ)max

a
Qπ(s, a)

=
ϵ

|A|
∑
a
Qπ(s, a) +

(∑
a

(
π(a|s)− ϵ

|A|

))
max
a
Qπ(s, a)

≥ ϵ

|A|
∑
a
Qπ(s, a) +

∑
a

(
π(a|s)− ϵ

|A|

)
Qπ(s, a)

=
∑
a

π(a|s)Qπ(s, a).

MC Learning with ϵ-Greedy Policy

Algorithm 6: MC Learning with ϵ-Greedy Exploration

Initialization: N(s, a) = 0,Q(s, a) = 0, ∀s, a, π0

for k = 0, 1, 2, . . . do
Initialize s0 and sample an episode following πk:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ πk

G← 0

for t = T− 1, T− 2, . . . , 0 do
G← γG+ rt
if (st, at) does not appear in (s0, a0, s1, a1, . . . , st−1, at−1) then

N(st, at)← N(st, at) + 1

Q(st, at)← Q(st, at) + 1
N(st,at) (G− Q(st, at))

Update policy of visited state via ϵk-greedy:

πk+1(a|st) =

1− ϵk +
ϵk
|A| if a = argmax

a′
Q(st, a′)

ϵk
|A| otherwise

end
end

end

Illustrative Example

0 2000 4000 6000 8000 10000
10

8

6

4

2

0

2

4

Av
er

ag
e

va
lu

e
ov

er
 fi

rs
t 1

0
st

at
es

= 0.05
= 0.25
k = 1/ k

Optimal

For the previously mentioned 10 × 10 gridworld problem.

Table of Contents

Sample Efficient MC Policy Evaluation

MC Learning (or Control)

Off-Policy MC Learning

Off-Policy Monte Carlo Evaluation

▶ On-policy learning vs off-policy learning
• On-policy: Learn target policy π from experience sampled from π;
• Off-policy: Learn target policy π from experience sampled from b.

▶ On-policy ϵ-greedy method which is not deterministic needs to behave
non-optimally in order to explore all actions.

▶ Off-policy method attempts to learn a deterministic optimal policy from data
generated by another exploratory policy.

Importance Sampling for Off-Policy MC Evaluation

In order to evaluate action value Qπ(s, a) from data sampled from a behavior
policy b, we need to express Qπ(s, a) in terms of the expectation with respect to
b. Given a subtrajectory τt = {st, at, rt, st+1, at+1, rt+1, · · · }, let (st, at) = (s, a)
and Pπt be the distribution of τt under policy π (similarly for Pbt). We have,

Qπ(s, a) = Eτt∼Pπt [Gt]

= Eτt∼Pbt

[
Pπt (τt)
Pbt (τt)

Gt
]
,

where Gt =
∑∞

t′=t γ
t′−trt′ and

Pπt (τt)
Pbt (τt)

=
P (st+1|st, at)

∏∞
k=t+1 P (sk+1|sk, ak)π (ak|sk)

P (st+1|st, at)
∏∞

k=t+1 P (sk+1|sk, ak)b (ak|sk)
=

∞∏
k=t+1

π (ak|sk)
b (ak|sk)

is known as importance-sampling ratio.

Importance Sampling for Off-Policy MC Evaluation

Given an
{s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT} ∼ b,

off-policy MC evaluation has the following form:

N(st, at)← N(st, at) + 1

Q(st, at)← Q(st, at) +
1

N(st, at)

(
Gt
Pπt
Pbt
− Q(st, at)

)

Weight for Initial Pair Should Not Be Included

Note when defining Qπ(s, a), action a is independent of policy π. Thus, when
computing importance sampling weight for (st, at), π(at|st)

b(at|st) is excluded.

!" !#

!$

%"
& = 1

%$
& = 0

%"
& = 1

& = 0

Suppose γ < 1. Optimal policy for s0 is
π∗(s0) = a0. Set Q(s, a) = 0 for all (s, a),
π0(s0) = a1 and π0(s1) = a0. Two possible
episodes for an exploratory behavior policy b:

(s0, a0, 1, s2) and (s0, a1, 0, s1, a0, 1, s2).

It is easy to verify that π0 will not be updated if
π0(a0|s0)
b(a0|s0) = 0 is included in the computation of
importance sampling weight. In contrast, π0 will
be updated if π0(a0|s0)

b(a0|s0) = 0 is not included.

Example is from Wenye Li.

Off-Policy MC Learning

Algorithm 7: Off-policy MC Learning
Initialization: ∀s, a, initialize Q(s, a), π0(s) = argmaxa Q(s, a), N(s, a) = 0.
for k = 0, 1, 2, . . . do

bk ← any soft policy, i.e., bk(a|s) > 0, ∀s, a
Initialize s0 and sample an episode following bk:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ bk

G← 0,W← 1

for t = T− 1, T− 2, . . . , 0 do
G← rt + γG
if (st, at) does not appear in (s0, a0, s1, a1, . . . , st−1, at−1) then

N(st, at)← N(st, at) + 1

Q(st, at)← Q(st, at) + 1
N(st,at) (W · G− Q(st, at))

πk+1(st)← argmaxa Q(st, a)
end
W← Wπk(at|st)

bk(at|st)

end
end

To handle the potential high variance incurred by importance sampling, one may consider weighted
importance sampling. See “Reinforcement learning: An introduction” by Sutton and Barto, 2018.

Illustrative Example

0 1000 2000 3000 4000 5000

25

20

15

10

5

0

5

Av
er

ag
e

va
lu

e
ov

er
 fi

rs
t 1

0
st

at
es

= 0.1
= 0.5
= 1

Optimal

ϵ-greedy policy is used as behavior policy.

For the previously mentioned 10 × 10 gridworld problem.

Remark

▶ Policy evaluation and policy improvement is a general and fundamental
framework for RL algorithms. Different evaluation methods may require
different improvement methods, and vice versa. As already presented, if we
use data sampled from target policy for evaluation, we should use ϵ-greedy
policy for improvement to encourage exploration. In contrast, if using greedy
policy for improvement, we may need to use data sampled from a more
exploratory behavior policy for evaluation based on importance sampling.

▶ Most algorithms presented in this lecture and the next one admit certain
convergence guarantees under mild conditions, details of which are omitted.

Questions?

	Sample Efficient MC Policy Evaluation
	MC Learning (or Control)
	Off-Policy MC Learning

