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A Typical Example

Monte Carlo (MC) methods refer to a collection of computational methods where
random simulation is used. A typical example is the computation of π.

Example 1 (Approximation of π)

▶ Ratio of the area of circle to the area of square: AC
AS

= π
4

▶ Simulation steps:
• Randomly generate n points inside the square;
• Count the number of points inside the circle: nc;
• π ≈ 4 · ncn .
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Simulation Result
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Compute Expectation or Integration

Computing the expectation or integration

µ = E [f(X)] =
∫
f(x)p(x)dx

is a ubiquitous task in science and engineering.

▶ Numerical Integration: Trapezium rule, Simpson’s rule, ....
▶ Monte Carlo Integration: Statistical methods based on random samples.



Simple Monte Carlo Integration

Let X1, · · · , Xn ∼ p(x) be i.i.d random samples. Then approximate µ by

µ̄n =
1

n

n∑
k=1

f(Xk).

▶ Un-bias and strong consistency

E

[
1

n

n∑
k=1

f(Xk)
]
= µ and lim

n→∞

1

n

n∑
k=1

f(Xk)
a.s.−→ µ.

▶ Finite sample variance

Var
[
1

n

n∑
k=1

f(Xk)
]
=
Var [f(X)]

n .



Illustrative Example

Estimate the integral
∫ 1

0
exdx.
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Variance Reduction

Variance reduction is an important component in statistical computing.

数学上等价，计算上未必等效. —冯康

Consider equivalent problems with more information, structure or control.

▶ Control variates

E [f(X)] = E [h(X)] , where h(X) = f(X) + c · (g(X)− E [g(X)]) .

If g(X) is highly correlated with f(X), deducting g(X) from f(X) could reduce
variance. Widely used in variance reduction of stochastic optimization.



Variance Reduction

Variance reduction is an important component in statistical computing.

数学上等价，计算上未必等效. —冯康

Consider equivalent problems with more information, structure or control.

▶ Importance sampling

E [f(X)] =
∫
f(x)p(x)dx =

∫ f(y)p(y)
q(y) q(y)dy = E

[
f(Y)p(Y)
q(Y)

]
.

If q(Y) is similar to f(Y)p(Y), then variance could be reduced (using quotient
in contrast to control variate where addition is used).



Control Variates

Notice that

Var [f(X) + c · (g(X)− E [g(X)])]
= Var [f(X)] + c2 · Var [g(X)] + 2c · Cov (f(X),g(X)) .

The best c∗ is given by

c∗ = −Cov (f(X),g(X))Var [g(X)] .

Then variance is reduced by

[Cov (f(X),g(X))]2
Var [g(X)] .



Illustrative Example

Estimate the integral
∫ 1

0
exdx. Let n = 1000. Take g(x) = x and c = −1.5.



Importance Sampling

Monte Carlo Integration via Importance Sampling

E [f(X)]︸ ︷︷ ︸
µ

= E
[
f(Y)p(Y)
q(Y)

]
≈ 1

n

n∑
k=1

f(Yk)
p(Yk)
q(Yk)︸ ︷︷ ︸

µ̄IS

,

where Y1, · · · , Yn ∼ q(y).

▶ If a region is important for computing E [f(X)], more data should be obtained
from this region. This can be achieved by importance sampling distribution,
followed by correction of bias caused by distinction between target
distribution and importance sampling distribution via w(y) = p(y)/q(y).

▶ The expression for importance sampling indeed indicates that evaluation of
E [f(X)] is not intrinsically associated with target distribution. This is
particularly useful when only data from a different distribution are available,
which is often the case in RL.



Selection of Importance Sampling Distribution

In order to reduce variance, q(y) should be selected such that f(y)p(y)/q(y)
varies not much over the integration region.

Theorem 1
The minimum variance of µ̄IS under q is achieved at

q∗(y) = |f(y)|p(y)
Ep [|f(X)|]

,

with the minimum variance given by

Varq∗ [µ̄∗
IS] =

1

n
(
(Ep [|f(Y)|])2 − µ2) .

▶ Though q∗(y) is not available due to Ep [|f(y)|], the theorem does provide a
principle for selecting q(y): q(y) should be “similar” to |f(y)|p(y) in shape.



Proof of Theorem 1

Note that ∀q,

Var
[
f(Y)p(Y)
q(Y)

]
=

∫ f(y)2p(y)2
q(y) dy− µ2

≥
(∫

|f(y)|p(y)dy
)2

− µ2.

It is easy to see that the equality holds if

q(y) = |f(y)|p(y)∫
|f(x)|p(x)dx .



Illustrative Example

Estimate the integral
∫ 1

0
1[3/4,1](x)dx. Let n = 1000. Take

p(x) = 1 for 0 ≤ x ≤ 1 and q(x) =

0 if 0 ≤ x < 0.5

2 if 0.5 ≤ x < 1.



A Word about Bias-Variance Tradeoff

Let µ̄ ∈ Rd be an estimator of parameter µ ∈ Rd (not necessarily E [µ̄] = µ). Then
the MSE is given by

E
[
∥µ̄− µ∥22

]
= E

[
∥µ̄− E [µ̄] + E [µ̄]− µ∥22

]
= ∥E [µ̄]− µ∥22︸ ︷︷ ︸

bias2
+E

[
∥µ̄− E [µ̄] ∥22

]︸ ︷︷ ︸
variance

.

▶ Unbiased estimator is not always the one the achieves the smallest MSE.



A Word about Bias-Variance Tradeoff: Example

Consider the problem of estimating a vector x ∈ Rd from the noisy observation

y = x+ e,

where e ∼ N (0, σ2Id). Suppose x is k-sparse, i.e., it only has k-nonzero entries.

▶ Least squares (LS) estimator: x̄1 = y. Unbiased; MSE is variance, given by

E
[
∥x̄1 − x∥22

]
= d · σ2.

▶ Zero estimator x̄2 = 0: E
[
(x̄2)j

]
̸= xj if xj ̸= 0 and Var [x̄2] = 0. Moreover,

E
[
∥x̄2 − x∥22

]
= ∥x∥22 ≤ k∥x∥2∞.

Assume ∥x∥∞ < σ. Then it can be seen that the MSE of x̄2 can be much
smaller than that of x̄1.

Without assumption ∥x∥∞ < σ, one can use the soft-thresholding denoiser x̄ = sgn(y)(|y| − λ)+
for suitable λ. See “Ideal spatial adaptation by wavelet shrinkage” by Donoho and Johnstone, 1994.
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Incremental Update for Sample Mean

Calculate sample mean µ̄k =
1
k
∑k

j=1 Xj in an incremental manner rather than
wait until all the samples are collected:

µ̄k+1 = µ̄k +
1

k+ 1
(Xk+1 − µ̄k) .

A more general form

µ̄k+1 = µ̄k + αk (Xk+1 − µ̄k) , αk > 0.

▶ This update can be viewed as a special case of Robbins-Monro Algorithm.



Robbins-Monro (RM) Algorithm

Consider the fixed point problem

x = h(x),

where h : Rd → Rd is a function. The fixed point iteration after introducing
stepsize is given by

xk+1 = xk + αk(h(xk)− xk).

RM considers the case where only a perturbation or noisy version of h(x),
denoted h̃(x) = h(x) + e, is available for every input x.

xk+1 = xk + αk

(
h̃(xk)− xk

)
= xk + αk (h(xk)− xk + ek) .

When h(xk) cannot be accurately known, using αk = 1 may be too aggressive. Then adjusting the
stepsize becomes necessary, which is also one reason that it is introduced.



Special Cases

▶ Incremental update for sample mean: h(x) = µ. For each µ̄ only the X
(E [X] = µ) can be obtained. Thus RM reduces to

µ̄k+1 = µ̄k + αk · (Xk+1 − µk).

▶ Stochastic gradient: min
x

Eξ [f(x; ξ)] is equivalent to x− Eξ [∇f(x; ξ)] = x. For
each x only ∇f(x; ξ) can be returned. Then RM reduces to

xk+1 = xk − αk∇f(xk; ξk).

▶ Finding root of f(x) = 0 is equivalent to fixed point problem x− f(x) = x.
Suppose only f(x) + e can be obtained for each x. Then, RM reduces to

xk+1 = xk − αk(f(xk) + ek).

▶ RL is stochastic optimization problem due to existence of expectation and
Bellman optimality equation is in the form of x = h(x) and TD algorithms in
RL are in the form of RM.



Illustrative Example

Find the root of f(x) = tanh(x− 1) with starting point x1 = 3.
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Motivation

Consider the mean estimation problem via µ̄k =
1
k
∑k

j=1 Xk, where Xk are i.i.d
samples with µ and variance σ2.

▶ By strong law of large numbers, one has

µ̄k → µ almost surely.

Can we establish similar asymptotic almost convergence for RM?
▶ Moreover, it is easy to show that

E
[
|µ̄k − µ|2

]
=

σ2

k .

Can we establish similar finite iteration convergence rate for RM?



Almost Sure Convergence of RM

Theorem 2 (Convergence of RM)
Assume the following conditions hold:
▶ |h′(x)| ≤ γ < 1 for all x;
▶

∑∞
k=1 αk = ∞ and

∑∞
k=1 α

2
k < ∞;

▶ E [ek|Fk] = 0 and E
[
e2k |Fk

]
< ∞ with probability 1, where Fk = {xk, xk−1, · · · }.

Then xk converges to the fixed point solution x∗ with probability 1.

The proof of this theorem relies on a powerful tool: Dvoretzky’s Theorem.

We only consider the scalar case for asymptotic almost sure convergence.



Dvoretzky’s Theorem

Theorem 3 (Dvoretzky’s Theorem)
Consider the stochastic process

wk+1 = (1− αk)wk + βkek,

where {αk}, {βk}, {ηk} are stochastic sequences and αk ≥ 0, βk ≥ 0. Suppose the
following conditions hold:
▶

∑∞
k=1 αk = ∞,

∑∞
k=1 α

2
k < ∞,

∑∞
k=1 β

2
k < ∞ uniformly with probability 1;

▶ E [ek|Fk] = 0 and E
[
e2k |Fk

]
< ∞, where

Fk = {wk,wk−1, · · · , ek−1, · · · , αk−1, · · · , βk−1, · · · }.

Then wk converges to 0 with probability 1.

Proof of Dvoretzky’s Theorem requires the knowledge of martingales, which will not be discussed; see
“On the Convergence of Stochastic Iterative Dynamic Programming Algorithms” by Jaakkola et al., 1994.



Proof of Theorem 2

Since |h′(x)| ≤ γ < 1, it is easy to see h(x) is a contraction. Thus the fixed point
solution x∗ exists. Thus,

xk+1 − x∗ = xk − x∗ + αk(h(xk)− h(x∗) + x∗ − xk) + αkek
= xk − x∗ + αk(h(x′k)(xk − x∗) + x∗ − xk) + αkek
= xk − x∗ − αk(1− h(x′k))(xk − x∗) + αkek.

It is easy to verify that the conditions of Dvoretzky’s Theorem holds for
wk = xk − x∗. Thus xk → x∗ almost surely.



Finite Iteration Convergence Rate

Theorem 4
Assume the following conditions hold:
▶ ∥h(x)− h(y)∥2 ≤ γ∥x− y∥2 for 0 < γ < 1;
▶ E [ek|Fk] = 0 and E

[
e2k |Fk

]
≤ B with probability 1, where Fk = {xk, xk−1, · · · }.

Set αk = 1
k . Then,

E
[
∥xk − x∗∥22

]
≲


1
k if 0 ≤ γ < 1/2
log k
k if γ = 1/2

1

k2(1−γ) if 1/2 < γ < 1.

The final convergence rate has been calculated with the help of Yuwen Wang.



Proof of Theorem 4

Without loss of generality, assume that ek are chosen independently in each
iteration. First we have

∥xk+1 − x∗∥22 = ∥xk − x∗ + xk+1 − xk∥22
= ∥xk − x∗∥22 + 2 ⟨xk − x∗, xk+1 − xk⟩+ ∥xk+1 − xk∥22
= ∥xk − x∗∥22 + 2αk ⟨xk − x∗,h(xk)− xk + ek⟩+ α2

k∥h(xk)− xk + ek∥22
= ∥xk − x∗∥22 + 2αk ⟨xk − x∗,h(xk)− h(x∗)⟩ − 2αk ⟨xk − x∗, xk − x∗⟩
+ 2αk ⟨xk − x∗, ek⟩+ α2

k∥h(xk)− xk + ek∥22
≤ ∥xk − x∗∥22 − 2αk(1− γ)∥xk − x∗∥22 + 2αk ⟨xk − x∗, ek⟩
+ α2

k∥h(xk)− xk + ek∥22
= ∥xk − x∗∥22 − 2αk(1− γ)∥xk − x∗∥22 + 2αk ⟨xk − x∗, ek⟩
+ α2

k∥h(xk)− h(x∗) + x∗ − xk + ek∥22
≤ ∥xk − x∗∥22 − 2αk(1− γ)∥xk − x∗∥22 + 2αk ⟨xk − x∗, ek⟩
+ α2

k (2∥xk − x∗∥2 + ∥ek∥2)2

≤ ∥xk − x∗∥22 − 2αk(1− γ)∥xk − x∗∥22 + 2αk ⟨xk − x∗, ek⟩
+ 8α2

k∥xk − x∗∥22 + 2α2
k∥ek∥22.



Proof of Theorem 4 (Cont’d)

Note that E [⟨xk − x∗, ek⟩] = 0. Taking an expectation on both sides yields that

E
[
∥xk+1 − x∗∥22

]
≤ (1− 2αk(1− γ) + 8α2

k)E
[
∥xk − x∗∥22

]
+ 2α2

kB.

Note that when k is sufficiently large 1− 2αk(1− γ) + 8α2
k < 1. Then the rate can

be established by some algebraic recursive inequalities.



Questions?
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