
Algorithmic and Theoretical Foundations of RL

Value Iteration and Policy Iteration

Ke Wei
School of Data Science
Fudan University

General Framework

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

Overall, different RL algorithms can be viewed as implementing the idea of
policy evaluation and improvement in different ways. This lecture first presents
the idea in the model based setting.

Recap: Bellman Operator and Bellman Optimality Operator

Bellman Operator

Elementwise form: [T πV](s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
Matrix form: T πV = rπ + γPπV

▶ T π is a contraction and Vπ a fixed point of T π : T πVπ = Vπ .

Bellman Optimality Operator

Elementwise form: [T V](s) = max
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γV

(
s′
)]

Matrix form: T V = max
π
T πV = max

π
{rπ + γPπV}

▶ T is a contraction and V∗ a fixed point of T : T V∗ = V∗.

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

Value Iteration

Value Iteration (VI): Solve Bellman optimality equation by fixed point iteration,

Vk+1(s) = max
a

Es′∼P(·|s,a)

[
r(s, a, s′) + γVk

(
s′
)]

.

▶ To retrieve a policy after value iteration:

πk+1(a|s) =

1 arg max
a

Es′∼P(·|s,a)

[
r(s, a, s′) + γVk (s′)

]
,

0 otherwise.

Question: Note that Vk+1 = T πk+1Vk = T Vk, but whether Vπk+1 = Vk+1?

Convergence of Value Iteration

Theorem 1
Let {Vk} be the sequence of value functions produced by VI. Then for any k ≥ 1,

∥Vk − V∗∥∞ ≤ γk∥V0 − V∗∥∞,

which implies that lim
k→∞

Vk = V∗.

▶ The per iteration computational cost of value iteration is O
(
|S|2|A|

)
.

▶ After at most k = O
(

log(1/ε)
log(1/γ)

)
iterations, one has ∥Vk − V∗∥∞ ≤ ε.

Illustrative Example

▶ three states: S = {s0, s1, s2}
▶ two actions: A = {a0, a1}
Each edge is associated with a
deterministic transition and a reward.

Suppose we start from V0 = 0. Then

Vk (s0) = r (s0, a0, s0) + γVk−1 (s0) = γVk−1 (s0) = γkV0 (s0) = 0,

Vk (s2) = r (s2, a0, s2) + γVk−1 (s2) = 1 + γVk−1 (s2) =
1− γk

1− γ
+ γkV0 (s2) =

1− γk

1− γ
,

Vk (s1) = max
{
r (s1, a0, s2) + γVk−1 (s2) , r (s1, a1, s0) + γVk−1 (s0)

}
= max

{
γ

1− γ

(
1− γk−1

)
,R

}
.

Thus (assuming R < γ
1−γ

),

V∗ (s0) = 0, V∗ (s1) =
γ

1− γ
, V∗ (s2) =

1

1− γ
.

Asynchronous Value Iteration

State values in VI are updated synchronously. An alternative is asynchronous
value iteration: Rather than sweeping through all states to create a new value
vector, only updates one state (an entry of vector) at a time.

Gauss-Seidel Value Iteration:

for s = 1, 2, 3, ...

V (s)← max
a

Es′∼P(·|s,a)
[
r
(
s, a, s′

)
+ γV

(
s′
)]

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

Policy Iteration

π0
E−−→ Vπ0 I−→ π1

E−−→ Vπ1 I−→ π2
E−−→ · · · I−→ π∗

There are two ingredients in Policy Iteration (PI).

Policy Evaluation:
Vπk = rπk + γPπkVπk .

Policy Improvement:

πk+1 (a|s) =

1 a = arg max

a
Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γVπk

(
s′
)]︸ ︷︷ ︸

Qπk (s,a)

,

0 otherwise.

▶ It is clear that

T πk+1Vπk = T Vπk and Vπk+1 = T πk+1Vπk+1 = lim
m→∞

(T πk+1)mVπk .

In addition, by policy improvement lemma in Lecture 1, one has Vπk+1 ≥ Vπk .

Convergence of Policy Iteration

Theorem 2
Let {πk} be the policy sequence produced by PI. Then for any k≥ 1,

∥Vπk − V∗∥∞ ≤ γk∥Vπ0 − V∗∥∞,

which implies that lim
k→∞

Vπk = V∗.

▶ The per iteration computational cost of policy iteration is O
(
|S|3

)
to evaluate

Vπk plus O
(
|S|2|A|

)
to produce a new policy.

▶ After at most k = O
(

log(1/ε)
log(1/γ)

)
iterations, one has ∥Vπk − V∗∥∞ ≤ ε.

Proof of Theorem 2

First note that

Vπk = T πkVπk ≥ T πkVπk−1 = T Vπk−1 .

Iterating this procedure yields that

Vπk ≥ T Vπk−1 ≥ · · · ≥ T kVπ0 .

Therefore,

V∗ − Vπk ≤ V∗ − T kVπ0 = T k(V∗ − Vπ0).

The assertion follows immediately by taking infinite norm on both sides.

Illustrative Example

Consider the example in following figure, where each state is associated with
three possible actions: al, a0, ar (move leftwards, stay unchanged, and move
rightwards). The reward is rs1 = -1 and rs2 = 1. The discount rate is γ = 0.9.

(a) (b)

Assume the initial policy π0 is given in (a). This policy satisfies π0(a0|s1) = 1 and
π0(al|s2) = 1. This policy is not good because it does not move toward s2. We
next apply policy iteration problem.

“Mathematical Foundation of Reinforcement Learning” by Shiyu Zhao, 2022.

Illustrative Example

▶ Policy EvaluationVπ0 (s1) = −1 + γVπ0 (s1)
Vπ0 (s2) = −1 + γVπ0 (s1)

⇒

Vπ0 (s1) = −10
Vπ0 (s2) = −10

▶ Policy Improvement

Qπ0(s, a) aℓ a0 ar
s1 − −10 −8
s2 −10 −8 −

Since π1 choose the action that maximize Qπ0(s, a), one has (see (b)):

π1 (ar|s1) = 1, π1 (a0|s2) = 1.

It is evident that this is an optimal policy.

Remark

▶ In both VI an PI, all the state values are updated→ full exploration.
▶ Current state values are used as backup for exploitation.
▶ VI and PI in terms of action values can also be similarly developed which are
the versions that will be used in model free RL methods.

Policy Iteration as Newton’s Method

For a nonlinear equation F(V) = 0, Newton’s method solves a first order
approximation at each iteration:

F(V) ≈ F(Vk) + Jk(V− Vk) = 0,

which yields

Vk+1 = Vk − (Jk)−1F(Vk).

Here, Jk is the Jacobian of F at Vk.

Policy Iteration as Newton’s Method

For the Bellman optimality equation, one has

F(V) = max
π
{rπ + γPπV} − V.

Given the current state value Vπk associated with policy πk, the Jacobian of F at
Vπk is given by γPπk+1 − I. The Newton’s update gives

Vπk − (γPπk+1 − I)−1(rπk+1 + γPπk+1Vπk − Vπk)
= Vπk − (γPπk+1 − I)−1rπk+1 − Vπk

= (I− γPπk+1)−1rπk+1

= Vπk+1 .

Thus, PI can be viewed as Newton’s method for nonlinear equation F(V) = 0.

Variants of PI: Truncated PI

Truncated policy iteration (TPI) is the same as PI except that it merely runs a
finite number of iterations in the policy evaluation.

Truncated Policy Evaluation: Set Vk,0 = Vk−1 and estimate Vπk via

Vk,j = rπk + γPπkVk,j−1,

where 1 ≤ j ≤ mk. Set Vk = Vk,mk , or equivalently, Vk = (T πk)mkVk−1.
Policy Improvement:

πk+1 (a|s) =

1 a = arg max
a

Es′∼P(·|s,a)

[
r (s, a, s′) + γVk (s′)

]
,

0 otherwise.

▶ Letting mk =∞, then Vk = lim
mk→∞

(T πk)mkVk−1 = Vπk and TPI is exactly PI. On

the other hand, letting mk = 1, then Vk = T πkVk−1 and TPI is exactly VI.

Variants of PI: Approximate PI

Approximate Policy Iteration (API) is an even more general framework than TPI,
where Vπk is evaluated approximately and πk+1 is obtained by approximate
policy improvement.

Approximate Policy Evaluation: Given πk, estimate Vπk by Vk that satisfies

∥Vk − Vπk∥∞ ≤ δ.

Approximate Policy Improvement: Produce a policy πk+1 that satisfies

∥rπk+1 + γPπk+1Vk − T Vk∥∞ ≤ ε.

Table of Contents

Value Iteration

Policy Iteration

Computational Complexity Analysis

ε-Optimal Policy and Error Amplification

Definition 1 (ε-optimal policy)
A policy π is called ε-optimal policy if

Vπ ≥ V∗ − ε1.

Theorem 3 (Error amplification)
For any vector V ∈ R|S|, let π be the greedy policy with respect to V, i.e,

π (a|s) =

1 a = arg max
a

Es′∼P(·|s,a) [r (s, a, s′) + γV (s′)]

0 otherwise.

Then Vπ ≥ V∗ − 2γ
1−γ
∥V− V∗∥∞ 1.

A Useful Lemma

Lemma 1
For any policy π and a vector V ∈ R|S|, there holds

Vπ ≥ V− 1

1− γ
max
s
{V(s)− T πV(s)}1.

▶ Note that Vπ = T πVπ . Thus, if V is a vector such that V ≈ T πV, it should hold
V ≈ Vπ . Lemma 1 validates this intuition by providing an entrywise result akin
to Bellman error (a notation that will be discussed later in this course).

Proof of Lemma 1

First consider (T π)kV,

(T π)kV = (T π)k−1T πV ≥ (T π)k−1(V−max
s
{V(s)− T πV(s)}1)

≥ (T π)k−1V− γk−1 max
s
{V(s)− T πV(s)}1

≥ · · · · · ·

≥ V− (1 + · · ·+ γk−1)max
s
{V(s)− T πV(s)}1

= V− 1− γk

1− γ
max
s
{V(s)− T πV(s)}1,

where the second line follows from

T π(V− c · 1) = rπ + γPπ(V− c · 1) ≥ T πV− γ · c · 1.

Taking a limit on both sides yields the result.

Proof of Theorem 3

First one has

T πV− (T π)2V = rπ + γPπV− rπ − γPπ(TπV) = γPπ(V− T πV).

It follows that

max
s
{T πV(s)− (T π)2V(s)} ≤ γ max

s
{Pπ(V− T πV)(s)} ≤ γ max

s
{(V− T πV)(s)}

= γ max
s
{(V− T V)(s)} ≤ γ(1 + γ)∥V− V∗∥∞,

where the equality follows from the fact T πV = T V by the definition of π. Thus,
the application of Lemma 1 yields that

Vπ ≥ T πV− 1

1− γ
max
s
{T πV(s)− (T π)2V(s)}1

≥ T V− γ(1 + γ)

1− γ
∥V− V∗∥∞1

= T V− T V∗ + V∗ − γ(1 + γ)

1− γ
∥V− V∗∥∞1,

from which the assertion follows directly.

ε-Optimal Policy and Error Amplification

Theorem 4 (Q-error amplification)
For any vector Q ∈ R|S|×|A|, let π be the greedy policy with respect to Q, i.e.,

π (a|s) =

1 a = arg max
a∈A

Q (s, a) ,

0 otherwise.

Then Vπ ≥ V∗ − 2
1−γ
∥Q− Q∗∥∞ 1.

Proof of Theorem 4

A direct calculation yields

V∗(s)− Vπ(s) = Q∗(s, π∗(s))− Qπ(s, π(s))
= Q∗(s, π∗(s))− Q∗(s, π(s)) + Q∗(s, π(s))− Qπ(s, π(s))
= Q∗(s, π∗(s))− Q∗(s, π(s)) + γEs′∼P(·|s,π(a))

[
V∗(s′)− Vπ(s′)

]
≤ Q∗(s, π∗(s))− Q(s, π∗(s)) + Q(s, π(s))− Q∗(s, π(s))
+ γEs′∼P(·|s,π(a))

[
V∗(s′)− Vπ(s′)

]
≤ 2∥Q− Q∗∥∞ + γ∥V∗ − Vπ∥∞.

The proof is complete after rearrangement.

Computational Complexity for ε-Optimal Policy

Theorem 5 (Computational Complexity of Value Iteration)
Fix a target accuracy ε. Then after

O
(
|S|2 |A|
1− γ

log
(

1

(1− γ) ε

))
elementary arithmetic operations, VI produces a ε-optimal π.

Theorem 6 (Computational Complexity of Policy Iteration)
Fix a target accuracy ε. Then after

O
(
|S|3 + |S|2 |A|

1− γ
log

(
1

ε

))
elementary arithmetic operations, PI produces a ε-optimal π.

Computational Complexity for Optimal Policy

Definition 2 (Strongly Polynomial)
An algorithm is strongly polynomial if it is guaranteed to find an optimal policy
with computation complexity only being polynomial in |S|, |A|, and the planning
horizon 1

1−γ
.

▶ VI is not strongly polynomial, but PI is strongly polynomial.

VI is Not Strongly Polynomial: Example

▶ three states: S = {s1, s1, s3}
▶ two actions: A = {a0, a1}
Each edge is associated with a
deterministic transition and a reward.

Recall that at k-th iteration, if starting from V0 = 0 then one has

Vk (s0) = 0, Vk (s1) = max
{

γ

1− γ

(
1− γk−1

)
,R

}
, Vk (s2) =

1− γk

1− γ
.

The greedy policy with respect to Vk at state s1 satisfies:

πk (s1) =

a0 if γ
1−γ

(
1− γk−1

)
> R

a1 otherwise.

“Modified policy iteration algorithms are not strongly polynomial for discounted dynamic
programming” by Eugene A. Feinberg, Jefferson Huang and Bruno Scherrer, 2014.

VI is Not Strongly Polynomial: Example

Assume R < γ
1−γ

. Then V∗(s1) = γ
1−γ

and the optimal action at s1 is a0. Thus the
greedy policy is optimal only if:

γ

1− γ

(
1− γk−1

)
> R⇔ γk−1 < 1− R

(
1− γ

γ

)
⇒ k > 1 +

log
(
1− R

(
1−γ
γ

))
log γ .

Since k→∞ when R→ γ
1−γ

, (nearly) infinite iterations are needed to produce
an optimal policy. This basically means that when R is approaching γ

1−γ
, it

becomes difficult to tell optimal action from non-optimal one and the problem
becomes difficult for VI.

Policy Iteration is Strongly Polynomial

Lemma 2 (Strict Progress Lemma)
Fix a suboptimal policy π0 and let {πk} be the sequence of policies produced by PI.
Then there exists a state s such that for any k ≥ 1

1−γ
log

(
1

1−γ

)
, one has

πk (s) ̸= π0 (s) .

▶ The lemma shows that after every k iterations, policy iteration eliminates a
suboptimal action at one state until there remains no suboptimal action to
be eliminated. This can only be continued for at most |S||A| − |S| times: for
every state, at least one action must be optimal.

▶ The strongly polynomial property of PI is related to the fact there are no
repetition policies (without considering ties) during the iteration unless
optimal policy is reached. If a different action is selected compared to last
iteration, then basically strict progress will be made.

“Improved and generalized upper bounds on the complexity of policy iteration” by Bruno Scherrer,
2016.

Proof of Lemma 2

The first key question is about how to measure the progress of policies. To this
end, consider one step improvement (appears quite a lot previously)

T π′
Vπ − Vπ,

which can be viewed as advantage of π′ relative to π in one-step lookahead.
Recall from Lecture 1 that if g(π′, π) ≥ 0, then

Vπ
′
− Vπ = (I− γPπ

′
)−1(rπ′ − (I− γPπ

′
)Vπ)

= (I− γPπ
′
)−1(T π′

Vπ − Vπ) ≥ 0.

Moreover, it can be shown that π∗ is the optimal policy if and only if

T πV∗ − V∗ ≤ 0, ∀ π.

Thus, we can use V∗ − T πV∗ to measure the progress of πk, which is expected to
decrease to zero. It is easy to see that if

[V∗ − T πkV∗](s) < [V∗ − T π0V∗](s),

then πk(s) ̸= π0(s).

Proof of Lemma 2 (Cont’d)

Moreover, by Bellman equation, one has

V∗ − T πkV∗ ≤ V∗ − Vπk .

It follows that

∥V∗ − T πkV∗∥∞ ≤ ∥Vπk − V∗∥∞ ≤ γk∥Vπ0 − V∗∥∞
= γk∥(I− γPπ0)−1(V∗ − T π0V∗)∥∞

≤ γk

1− γ
∥V∗ − T π0V∗∥∞�

When π0 is non-optimal (how it is used?), there exists an s such that

[V∗ − T πkV∗](s) < [V∗ − T π0V∗](s)

for sufficiently large k.

Runtime Bound for Policy Iteration

Theorem 7
Let {πk}be the sequence of policies obtained by policy iteration starting from an
arbitrary initial policy π0. Then, after at most

O
(
|S||A| − |S|

1− γ
log

(
1

1− γ

))
iterations, the policy produced by policy iteration is optimal. In particular, policy
iteration can compute an optimal policy with at most

O
(
|S|4|A|+ |S|3|A|2

1− γ
log

(
1

1− γ

))
arithmetic and logic operations.

Another Strongly Polynomial Approach: Linear Programing (LP)

The linear programming approach is based on an interesting fact: If a vector V
satisfies T V ≤ V then V∗ ≤ V. This means that for all s ∈ S ,

V∗ (s) = min {V (s) : T V ≤ V} .

Thus V∗ is the unique solution of following optimization problem:

min
∑
s∈S

V (s)

s.t. T V (s) = max
a∈A

∑
s′
P
(
s′|s, a

) (
r
(
s, a, s′

)
+ γV

(
s′
))
≤ V(s), ∀s ∈ S.

This is further equivalent to LP with |S| unknown variables and |S| × |A|
inequality constraints:

min
∑
s∈S

V (s)

s.t.
∑
s′∈S

p
(
s′|s, a

) (
r
(
s, a, s′

)
+ γV

(
s′
))
≤ V(s), ∀s ∈ S, a ∈ A.

“The Simplex and Policy-Iteration Methods are Strongly Polynomial for the Markov Decision Problem
with a Fixed Discount Rate” by Yinyu Ye, 2011.

Questions?

	Value Iteration
	Policy Iteration
	Computational Complexity Analysis

