Algorithmic and Theoretical Foundations of RL

Introduction of RL for LLMs

Ke Wei
School of Data Science
Fudan University

With help from Jiacai Liu
Some illustration figures borrowed online

Auto-Regression: Next Token Prediction

|V] tokens
d-sized - s
vector ‘ P(*|I saw a cat on a)
Transform h linearly Linear|~Q |softmax get probability
from size d to |[V] - the (vt

layer | ¢ distrib

vocabulary size

the next token

:vector representation of
context I saw a cat ona

l Input word embeddings

I saw a cat on a

Neural network

([Eoo0)
J

» Auto-regressive : y; ~ 7y (-|y<:) is a function of its past tokens y:.

» Neural softmax policy : 7y (-|y<:) = soft max (1fy (<)), where fo (y<t) € RV
is the logits vector, 7 is the sampling temperature.

» Network Architecture : f; is a multi-layer decoder-only transformers.

Token and Vocabulary

Tokenization is a fundamental preprocessing step in NLP that breaks down a
piece of text, such as a sentence or a paragraph, into smaller, more manageable
units called tokens. The set of all possible tokens is the vocabulary.

krom transformers import AutoTokenizer

model_path = "/mnt/hdfs/jiacai. liu/models/Qwen2.5-32B/"
tokenizer = AutoTokenizer.from_pretrained(model_path)
text = 'We love Fudan University'

tokens = tokenizer.tokenize(text)

input_ids = tokenizer.encode(text)

print("text",text)

print("tokens",tokens)

print("input_ids", input_ids)

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

< > jiacai.liu $ /bin/python /mnt/hdfs/jiacai.liu/test.py
text We love Fudan University

tokens ['We', 'Glove', 'GF', 'ud', 'an', 'GUniversity'l

input_ids [1654, 2948, 434, 661, 276, 3822]

Token and Vocabulary

{} vocab.json X

:320,"i1":321,"//":322,"Gand" :323, "ur": 324 : 326, "ex":327,"6S":328,
: 333, "k 1334, "G} 335, "em” 1336, “01": 337, "GG66G6GE 62338, "th":339
"G{C":341,"Gg":342,"ig": 343, "iv":344,", (" 1345, " ce" :346, "o
“ot":354, "us":355, "GC":356, "Gst" 1357, "GI":358, "un" :359, “ul":360, "ue" :361

Vocabulary of Qwen25-32B which consists of 151642 tokens

Network Architecture : Decoder-Only Transformer

lllustration of outputs of four timesteps, but

not four neural networks since different
timesteps use the same neural network

e e N

Il Token Classification Head \I

ik 4 '

1 1

e e & 4§
Output Tokkn 1
Vec!orskt | ’l

b
?

(Decoder Block)

(Decoder Block)

(Decoder Block

) t 4)
Position Embedding

GP@@P@P

InpulTuken‘ T T
Vectors

Decoder-only tansformer = position embedding + self-attention + residual connection +

layer norm + multi-layer FFNN

Layer Norm

64—

Masked Self-Attention

Attention Mechanism

Attention output

w) [[[

Hidden states from
previous layer

he =37 <¢ SiXi

exp((Qxt,Kx;)) H
Sz @R) is the attention score that computes the relevance

of the i-th input to the current output.

Intuitively, s; =

Attention Mechanism (Cont'd)

X1

Input: X = | : | € R™"

q:
Query Matrix: Q = XWo = | : | € R™®
q:
Ry
Key Matrix: K = XWx = | : | € R
ke
Vi
Value Matrix: V= XWy = | : | € R"*%

Vi

Attention Mechanism (Cont'd)

(@i, k1) - (qu, k)
Score Matrix: S = QK' = : :
(G, ki) - (Gt ki)
hy
S
Output: H= | : | =softmax | —=0o M |V
he mask
T

Vt:he = exp((qt, Ri)/V/d2) i
t ,gzt > < exp((qe, k() //d>) Y

» Number of parameters in Wq, Wx and Wy is independent of timesteps!

Token-Level MDP in LLMs

Text generation process of LLMs follows a token-level MDP. Given a prompt x, let
y = (ao,ai,--- ,ar—1) be the response consists of a sequence of tokens.

» initial state so = x, the sampled prompt;
» action: a; = y;, token sampled from vocabulary (action space);

» state is the context prefix consists of previous tokens, i.e.,

st = (X,y<t) = Concat(so, ao, ..., At—1);

v

policy network 7 (-|st) = mo(:|X,¥<t), probability of outputting next token;
transition kernel is deterministic, i.e., Se11 = (St,at) = (X, Y<t)-

vy

reward function r depends on task, but generally is outcome-based, i.e.,

rix,y) t=T-1
t=0

r(st,ar) =

Token-Level MDP in LLMs

SO ¥R

E‘l'j%’{(state): <|im_ start|>system Please reason step by step, and put your final answer
within \boxed{}.<|im end|> <|im start|>user Let $a,$ $b,$ and c be distinct real numbers.
Simplify the expression \[\frac{(x + a) 3} {(a -~ b)(a - ¢)} + \frac{(x + b) 3} {(b - a) (b -
o)} + \frac{(x + ¢) "3} {(c - a) (c = b)}.\I<|im end|> <|im_start|>assistant To

Action Space (Top 50 Tokens):

token

simplify | solve simpl find Simpl |simplified

tackle

LS

0.998958|0.001024 | 0.000008 | 0.000004 | 0.000004 | 0.000001

0.000000

Example of text generation process at timestep 0

Token-Level MDP in LLMs

S1#4ER

E’l'j?u’z(state): <|im start|>system Please reason step by step, and put your final answer
within \boxed{}.<|im_end|> <|im_start|>user Let $a,$ $b,$ and c be distinct real numbers.
Simplify the expression \[\frac{(x + a) 3}{(a - b)(a - ¢)} + \frac{(x + b) 3} {(b - a) (b —
o)} + \frac{(x + ¢) "3} {(c — a) (c — b)}.\I<|im_end|> <|im_start|>assistant To

Action Space (Top 50 Tokens):

token

the this \ and each |expressions

the

72

1.000000 [0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000

0.00000

Example of text generation process (con't) at timestep 1

Token-Level MDP in LLMs

S457 S

E'ﬁ%(state): <|im_start|>system Please reason step by step, and put your final answer
within \boxed{}.<|im_end|> <|im_start|>user Let $a,$ $b,$ and c be distinct real numbers.
Simplify the expression \[\frac{(x + a) "3} {(a - b) (a = ¢)} + \frac{(x + b) "3} {(b - a) (b -
o)} + \frac{(x + ¢) "3} {(c - a) (¢ - b)}.\1<|im end|> <|im start|>assistant To simplify the
expression \(\frac{(x + a)"3}{(a - b) (@ = ¢)} + \frac{(x + b) "3} {(b - a) (b - c)} + \frac{(x
+¢)"3}{(c —a)(c - b)}\), we will proceed step by step. First, let’s consider the general
structure of the expression. The expression is a sum of three terms, each of which is a
fraction with a cubic polynomial in the numerator and a quadratic polynomial in the
denominator. The denominators \((a = b) (a = ¢)\), \((b —a) (b - c)\), and \((c - a) (c -
b)\) are symmetric and suggest that we might be able to use polynomial interpolation. The
expression can be interpreted as a Lagrange interpolating polynomial of degree 2. The
polynomial \(P(x)\) that passes through the points \((a, (x+a) 3)\), \((b, (x+b) 3)\), and
\((c, (x+¢)"3)\) can be written as: \[P(x) = \frac{(x - b) (x = c)}{(a - b)(@a -)} +a)3
+ \frac{(x - a)(x - o)} {(b -~ a) (b - c)} (x + b) "3 + \frac{(x - a) x - D)} {(c - a)c - D} &
+ ¢) "3.\] However, since \(P(x)\) is a polynomial of degree 2, and the expression we are
given is a sum of terms that are designed to cancel out all the higher—degree terms, the
polynomial \(P(x)\) must be of the form \(P(x) = (x + a) + (x + b) + (x + ¢)\), which
simplifies to \(P(x) = 3x + (@ + b + ¢)\). Thus, the simplified form of the given
expression is: \[3x + (a + b + ¢).\] Therefore, the final answer is: \[\boxed{3x + a + b +

ch.\]
token <|im_end|> |<|im_start|> bu eated iska istil
1% 0.999999 0.000000 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000(

Example of text generation process (con't) at the last timestep

Reward Models in LLMs

Reward Models (RMs) are crucial in RLHF to align LLMs with complex human
values, preferences, and instructions, by converting subjective feedback into a
scalable optimization signal. There are typically three types of reward signals:

» Rule-Based RMs: Reward designed explicitly from a collection of pre-defined
rules and heuristics, often used to enforce safety or structural constraints.

» Discriminative RMs: Model trained to compare and rank multiple LLM outputs
based on human preference data, assigning a score or probability to reflect
which response is better.

» Generative RMs: An approach that leverages the LLM’s own generation
capabilities, often by training it to output a preference decision or a
"Chain-of-Thought” rationale for the reward, using next-token prediction.

Rule-Based Reward Models

Rule-based RMs uses a pre-defined collection of explicit, symbolic rules to
assign a (binary) reward to a model’s output and are often used in verifiable
tasks, such as mathematical reasoning and coding.

Base LLM

’7 RL Policy —’

COMPLETTONS or broRet

L Verifiable Rewards <—‘

Rule-based RMs are commonly used verifiable tasks

Math-Verify

Math-Verify is a robust mathematical expression evaluation system designed for
assessing LLMs outputs in mathematical tasks.

astrp) == bstripQ)

Enterval or FinteSets.

Znteval check using ampty| [Compare bscrhs.
paretoming) of gold and pred.

Latex maten

Allow €or Figped relation

Architecture of math-verify

Math-Verify

from math_verify import parse, verify

Parse the gold and answer
If you know that gold will only contain latex or expr (no latex env), use
parse(gold, extraction_config=[LatexExtractionConfig()]) or parse(gold, extraction_config=[ExprExtrac

gold = parse("${1,3} \\cup {2,4}$")
answer = parse("${1,2,3,4}$")

Order here is important!

verify(gold, answer)
>>> True

Code example of Math-Verify

Discriminative Reward Models

Discriminative RM is standard and very common in RLHF: a model trained to
discriminate between a preferred response and a dispreferred response from a

set of human-labeled comparisons.

Preference Score

RMg(z,y) € R
1
! é

Feed-Forward

Output Token
Vectors
t t 1 /

Normalization

Decoder Block
Decoder Block) @
-—

!
(Decoder Block)
f f f ? \\ Masked Self-Attention

@ Position Embedding \
\
I [

®

[

[T [T

Input Token
Vectors

Structure of discriminative RMs: Input is (x, y), concatenation of x and y

RM Training on Preference Dataset

Discriminative RM is trained on a manual preference dataset by maximizing the
log-likelihood of preference probability under the Bradley-Terry (BT) model.

Reward

+ Chosen ——
/ Sure thing! Open model

Prompt your terminal and ...
Please help me kill
this linux process

. Reward
*—) Rejected ——> inodel

As 3 language
model trained by...

Scores
0.2

Win / loss

0.4

Discriminative RM should assign higher score to chosen response

Bradley-Terry Model

Probability that chosen response is
preferred over rejected reference

P(ye > yr) = exp(l’¢(X, yC))

\exp(l’qs (X,)/c))’ + lGXP('@ (X, yr)),
Y I

RM score for RM score for
chosen response rejected response

It is easy to see that

P(yc > yr)
1—P(yc>yr)

Train reward model by minimizing the negative log-likelihood,

log

= rd)(xvyc) - r¢(Xay")'

m(gn]E(X7YCayf)~D[_ IOg O'(I’¢(X, yC) - r¢(x, y"))]7

where o(-) denotes the sigmoid function.

RLHF: Reinforcement Learning from Human Feedback

The goal in RLHF to solve following problem:
max V™ (D) = Exwp {Eymry (. [Fo (X, ¥)] = BKL (o (-1X) [[7res (X)) }

mo (Y1X)
Tret(Y[X)

= EXND]EVN,TH(.‘X) |:r¢ (X, y) — Blog

where s is the reference policy (often the base policy before RL training) used
to control the policy shift to avoid knowledge forgetting, y = (ao, ...,ar—1), and

T—1
ro(xy) =y rs((x y<) Ve
=0 St at

)7

T-1
mo(yx) = [[wo(velx, y<o).
t=0

Policy Gradient

By direct calculation, one has

V(D) = BBy |(ro(y) ~ Blog TN —) Viogma(yo) |

= — Blog TV
= Ex~DEyry (%) K@(x, y) — Blog Wref(y\X)> V log me (y|x)}
> S 1o, To Ve X, y<e)
= ExpEynrmg(. V1 X, rs(X,y) — log IR V<)
DBy g (1) ; og mo (Ve[X, y<t) < s(X,Y) /5; 08 X,y <t)

For more details, see https://zhuanlan.zhihu.com/p/18918225252746374457share_code=
lonxLXv1Alpgq&utm_psn=1984360514466379479 by Jiacai Liu.

https://zhuanlan.zhihu.com/p/1891822525274637445?share_code=1onxLXvlAlpgq&utm_psn=1984360514466379479
https://zhuanlan.zhihu.com/p/1891822525274637445?share_code=1onxLXvlAlpgq&utm_psn=1984360514466379479

PPO and GRPO

Note that
V(D) = Exap {Eyry(-x) [Fo (X, ¥)] = BKL (70 (-X) [|7rer (-1X)) } -

Following the idea in TRPO/PPO, the first term can be well approximated by

T-1

o (Ve|(X,¥<t)) ,rp
e {Z o, (el y <))<k

provided m is sufficiently close to my,. In order to impose this condition, we can
still consider the following clipped objective,

T—1
Ex~Ey e, (9 [Z min (rt(a)Af, clip (re(8),1 — e,1+ ¢) A?)}
t=0

where

_ oY) L ab
r:(0) = AP and A = A% ((X,Y<t),Vt).

PPO and GRPO

Together with the KL part, we have the PPO objective for RLHF,

T-1
ExEyrg, 1o {Z min ((0)AF, clip (re(6), 1 — €1+ €) AF) — BKL (o (1) [mrer (1))

t=0

» Vanilla PPO: Use GAE()) to estimate A*. Note that the token level reward is
often 0 except the last one. Even for the reward model based on the BT
model, it is difficult to explain the reward for intermediate tokens.

» GRPO: Sample n responses y1, - - - , ¥, for each prompt x, and estimate Af by

AR — ATk ((x _ Ts(X,Yr) — mean(rg (X, Yn), - -+ , 1o (X, Yn))
' k((’y<t)’yt) std(r¢(x,y,,)7--- ,r¢(x,y,,))

Assume there only exists reward in last token. GRPO estimates Af via

Af = Q% ((X,Y<t), Y1) — V™, ((X,y<t))
~ Qwek ((X7 Y<t)7 yt) - VTer (X)
unbiased

: r(x,y) — mean(ry(X,Yn), -, ro(X,¥n)).
estimator

Direct Policy Optimization

Recall the RLHF objective,
max V™ (D) = BBy, () [l (,¥) + Blog mret(y|X) — Blog ma (y[x)]
From this, it can be seen that the optimal policy 7 satisfies

exp(rs(X,¥)/B + log mret (VIX)
Zs(x)

ma(YP) =

It follows that

75 (Y1X)
Trer(V1X)

rs(x,y) = Blog + BlogZs(x).

Direct Policy Optimization

Under the Bradley-Terry Model,
P(ye > yilX) = o (rs (X, ¥e) = ro(X,yr))

_ w3 (e
= (s1o8 22 el ~ 0

™5 (YrlX)
Wref(yr\x)) '

Therefore, it is natural to optimzie the following DPO objective,

: _ mo(Ye|X) o (Yr[X)
mgln E(x.ye.yr)~D [log o (ﬂ log (T Blog TR

» DPO is derived under Bradley-Terry model, requires high quality preference
data, friendly for off-line data but seems lacking true exploration ability.

Questions?

