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Markov Chain

Definition 1 (Markov Chain)
Let S = {s1, · · · , sn} be a finite state space. The discrete-time dynamic system
(st)t∈N ∈ S is a Markov chain if it satisfies the Markov property:

P (st+1 = s | st, st−1, . . . , s0) = P (st+1 = s | st) .

Transition Matrix:

P =


ps1s1 ps1s2 · · · ps1sn
ps2s1 ps2s2 · · · ps2sn
...

...
. . .

...
psns1 psns2 · · · psnsn

 , where psisj = P
(
st+1 = sj|st = si

)
.

▶ It is easy to see that P1 = 1.



Stationary Distribution of Markov Chain

Given an initial visiting probability vector x0 over the state space S , it is not hard
to see that

xt = (PT)tx0

is visiting probability vector at time t. The limit (exists under mild conditions)

x = lim
t→∞

xt

is known as the stationary distribution of Markov chain. It is easy to show that

PTx = x.



Illustrative Example
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Markov Decision Process (MDP)

next state 

Environment 

   Agent  

reward 

state 
action 

Markov chain augmented with decision and reward: M = ⟨S,A, P, r, γ⟩

▶ S : state space (状态空间)
▶ P(·|s, a): state transition model
(状态转移模型)

▶ γ ∈ [0, 1]: discount factor (折扣因子)

▶ A: action space (动作空间)
▶ r(s, a, s′): immediate reward
(即时奖励)

▶ π(·|s) : A → ∆ (策略)

Unless otherwise stated, we typically assume |S| < ∞, |A| < ∞, and r is bounded. For simplicity,
we consider the case where r is fully determined by (s, a, s′) (i.e, no randomness in r).



Illustrative Example

▶ three states: S = {s1, s1, s3}
▶ two actions: A = {a1, a2}
Each edge is associated with a
transition probability and a reward.

For instance, we can observe that:

P(s3|s3, a2) = 0.6, P(s2|s3, a2) = 0.4,

r(s3, a2, s3) = −2, r(s3, a2, s2) = −1.

Assume s2 will always transfers to s2 with reward 0 no matter what action is taken.



Tabular Setting

At state si take action aj, transits to state sij ∈ {s1, · · · , s|S|} and receive reward rij.

s1 s2 · · · s|S|

a1 (s11, r11) (s21, r21) · · · (s|S|1, r|S|1)

a2 (s12, r12) (s22, r22) · · · (s|S|2, r|S|2)

...
...

...
...

...
a|A| (s1|A|, r1|A|) (s2|A|, r2|A|) · · · (s|S||A|, r|S||A|)

Setting that should be kept in mind for theoretical discussion. A terminal state can exist.



State Value and Action Value

▶ Trajectory (轨迹):

τ = (s0, a0, r0, s1, a1, r1, s2, a2, r2, s3, · · · ), rt = r(st, at, st+1).

▶ Given s0, the probability of trajectory τ is given by

Pπs0(τ) =
∞∏
t=0

π(at|st)P(st+1|st, at).

▶ Infinite horizon discounted return (折扣回报):

r0 + γr1 + γ2r2 + · · · =
∞∑
t=0

γtrt.

Here we consider infinite horizon discounted return which enable us to focus on the stationary policy.
In finite horizon problems, it may be beneficial to select a different action depending on the remaining
time steps which has the form π(s) = (π0(s), π1(s), · · · ).



State Value and Action Value

▶ State value (状态价值函数):

Vπ(s) = Eτ∼Pπs0

[
∞∑
t=0

γtrt|s0 = s
]
, ∀s ∈ S.



State Value and Action Value

▶ Action value (Q-value,动作价值函数):

Qπ(s, a) = Eτ∼Pπs0,a0

[
∞∑
t=0

γtrt|s0 = s, a0 = a
]
, ∀(s, a) ∈ S ×A,

where the probability for τ = (s0, a0, r0, s1, a1, r1, s2, a2, r2, s3, · · · ) is given by

Pπs0,a0(τ) = P(s1|s0, a0)
∞∏
t=1

πt(at|st)P(st+1|st, at).



State Value and Action Value

▶ State and action values can be used to quantify goodness/badness of
policies and actions.

▶ The relation between the state value and the action value is given by

Vπ(s) = Ea∼π(·|s) [Qπ(s, a)] ,
Qπ(s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γVπ(s′)

]
.

▶ Computing the expectation seems not easy. However, the MDP structure
enables us to compute the values by finding the solutions to linear systems
(i.e., Bellman equations).



Remark

Action value or Q-value is the quantity that is primarily used in RL algorithms
(but it is closely related to state value as already mentioned). Suppose we ask
the question which action is the best at a state. The naive approach is to look
one step forward following a fixed action, expand all the possible trajectories,
compute the best reward (optimal action value) that can be obtained from that
action, and then choose action that based on this reward. However, computing
the best reward over all the possible trajectories starting from that action is
difficult. Instead, we can look one step forward from the action and then use the
reward obtained from a base policy to approximate the reward that can be
obtained starting from the second step, which yields the action value. This
intuition indeed underpins developments of value-based RL methods.



Bellman Equation for State Value

Theorem 1
Given policy π, state value satisfies the following Bellman equation:

Vπ(s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γVπ(s′)

]
.

Alternatively, if for any V ∈ R|S|, define the Bellman operator:

[T πV](s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
,

Bellman equation can be rewritten as

Vπ = T πVπ.

That is, Vπ is a fixed point of T π .

▶ T π looks one step ahead using policy π.



Matrix Form for Bellman Operator

Lemma 1
The Bellman operator can be expressed as the following matrix form:

T πV = rπ + γPπV,

where

rπ =


rπ(s1)
...

rπ(sn)

 , Pπ =


pπs1s1 . . . pπs1sn
...

. . .
...

pπsns1 . . . pπsnsn

 ,

and the entries of rπ and Pπ are

rπ(s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′)

]
and pπss′ =

∑
a

π(a|s)P(s′|s, a).

▶ pπss′ is the transition probability from s to s′ under policy π.



Basic Properties

Properties about Pπ

▶ I− γPπ is invertible
▶ (I− γPπ)−1 ≥ I
▶ if r ≥ 0, then (I− γPπ)−1r ≥ r ≥ 0

⇒ Vπ = (I− γPπ)−1rπ

Properties about T π

▶ T π is monotone, i.e., T πV1 ≤ T πV2 if V1 ≤ V2.
▶ T π is a contraction with respect to ∥ · ∥∞,

∥T πV1 − T πV2∥∞ ≤ γ∥V1 − V2∥∞.

⇒ Vk+1 = T πVk → Vπ

Vk → Vπ can be established
via fixed point theorem.



Remark

If expanding Vπ = (I− γPπ)−1rπ as follows:

Vπ = (I− γPπ)−1rπ
= rπ + γPπrπ + · · ·+ γk(Pπ)krπ + · · · ,

we can see that it coincides with the original definition of Vπ based on trajectory.



Fixed Point Theorem

Definition 2 (Contraction mapping)
Let (X,d) be a complete metric space. Then amap T : X→ X is called a contraction
mapping on X if there exists ρ ∈ [0, 1) such that d(T x, T y) ≤ ρ · d(x, y) for all
x, y ∈ X.

Theorem 2 (Fixed point theorem)
Let (X,d) be a non-empty complete metric space with a contraction mapping T :

X → X. Then T admits a unique fixed point x∗ in X (i.e. T x∗ = x∗ ). Furthermore,
x∗ can be obtained as follows: start with an arbitrary element x0 ∈ X and define a
sequence (xk)k∈N by xk = T xk−1 for k ≥ 1. Then limk→∞ xk = x∗.



Illustrative Example

Consider policy π(a|s) = 0.5 for all s, a
and let γ = 0.9:

Pπ =

 0.3 0.35 0.35

0 1 0

0.15 0.35 0.5

 ,

rπ = [−0.25, 0, 0.2]T,

Vπ = [−0.21, 0, 0.31]T.

We can also verify the correctness of Vπ . Taking the state s3 as an example, it is
not hard to show that

Vπ(s3) =
∑
a

π(a|s3)
∑
s′
p(s′|s3, a)

(
r(s3, a, s′) + γVπ(s′)

)
=0.5 (−1.6 + 0.9× 0.6× 0.31) + 0.5 (2 + 0.9(0.4× 0.31− 0.3× 0.21))

=0.31.



Bellman Equation for Action Value

Theorem 3
Given policy π, action value satisfies the following Bellman equation:

Qπ(s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γEa′∼π(·|s′)

[
Qπ(s′, a′)

]]
.

Alternatively, if for any Q ∈ R|S|×|A|, define the Bellman operator:

[FπQ](s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γEa′∼π(·|s′)

[
Q(s′, a′)

]]
,

Bellman equation can be rewritten as

Qπ = FπQπ.

That is, Qπ is a fixed point of Fπ .

▶ Fπ also admits a matrix form and it is also a contraction with infinity norm.
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Optimal State Value and Optimal Policy

Definition:

▶ Optimal state value: V∗(s) = maxπ Vπ(s),∀ s ∈ S

For an MDP, optimal state value exists since we can restrict our focus on the set
of deterministic policies (finite number) as implied by the following theorem.

Lemma 2 (Policy improvement)
For any policy π, if we define a new policy π′ as follows:

π′(a|s) =


1 if a = arg max

a
Es′∼P(·|s,a)

[
r(s, a, s′) + γVπ(s′)

]︸ ︷︷ ︸
Qπ(s,a)

,

0 otherwise,

then there holds Vπ′
≥ Vπ .

For conciseness, we only consider stationary policies.



Proof of Lemma 2

By the Bellman equation, we have

Vπ(s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γVπ(s′)

]
≤ max

a
Es′∼P(·|s,a)

[
r(s, a, s′) + γVπ(s′)

]
.

In terms of the Bellman operator, this implies that

Vπ = T πVπ ≤ T π′
Vπ.

Iterating this procedure yields that

Vπ ≤ (T π′
)kVπ → Vπ

′
,

which completes the proof.



Remark

Note that the key in the proof of Lemma 2 is

Vπ ≤ T π′
Vπ,

which relates two policies together in one inequality. This basically means π′ is
superior to π in one-step lookahead while Vπ ≤ (T π′

)kVπ means π′ is superior
to π in multi-step lookahead. Indeed, there is another way to show Vπ′

≥ Vπ

based on this inequality:

Vπ
′
− Vπ = (I− γPπ

′
)−1(rπ

′
− (I− γPπ

′
)Vπ) ≥ 0,

where we have used the identity

T π′
Vπ − Vπ = rπ

′
+ γPπ

′
Vπ − Vπ = rπ

′
− (I− γPπ

′
)Vπ.

As can be seen later, the weighted performance difference between Vπ′ and Vπ is
an expectation of T π′Vπ(s)− Vπ(s) over states under certain distribution.



Construction of Optimal Policy

Theorem 4 (Existence of optimal policy)
For an MDP, there exists a single (not unique) deterministic optimal policy π∗, de-
fined as follows

π∗(a|s) =

1 if a = arg max
a

Es′∼P(·|s,a) [r(s, a, s′) + γV∗(s′)] ,

0 otherwise,

such that

V∗(s) = Vπ∗(s), ∀ s ∈ S.



Proof of Theorem 4

By the definition of π∗, we have for any π,

Vπ(s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γVπ(s′)

]
≤ Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γV∗(s′)

]
≤ max

a
Es′∼P(·|s,a)

[
r(s, a, s′) + γV∗(s′)

]
.

It follows that ∀ π, Vπ ≤ T π∗V∗. Thus, V∗ ≤ T π∗V∗. Iterating this procedure
yields as in the proof of Theorem 2 yields that V∗ ≤ Vπ∗ . Since V∗ ≥ Vπ∗ holds
trivially, we have V∗ = Vπ∗ .



Bellman Optimality Equation for Optimal State Value

Theorem 5 (Bellman optimality equation)
The optimal state value satisfies the following Bellman optimality equation:

V∗(s) = max
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γV∗

(
s′
)]

.

Alternatively, if for any V ∈ R|S|, define the Bellman optimality operator:

[T V](s) = max
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γV

(
s′
)]

,

Bellman optimality equation can be rewritten as

V∗ = T V∗.

That is, V∗ is a fixed point of T .



Remark

▶ Bellman optimality equation provides a more tractable characterization of
optimal values and value-based RL methods are essentially about solving
Bellman optimality equation under various settings.

▶ Bellman optimality operator can be viewed as one-step improvement
operator. It is easy to see that T is monotone, T V1 ≤ T V2 if V1 ≤ V2. In
addition, T has the following matrix form

T V = max
π

T πV = max
π

{rπ + γPπV}.



Proof of Theorem 5

Since V∗(s) = Vπ∗
(s), by Bellman equation for Vπ∗

(s), we have

V∗(s) = Vπ
∗
(s) = Ea∼π∗(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γVπ

∗
(s′)

]
= Ea∼π∗(·|s)Es′∼P(·|s,a)

[
r(s, a, s′) + γV∗(s′)

]
= max

a
Es′∼P(·|s,a)

[
r(s, a, s′) + γV∗(s′)

]
,

where the last line follows the definition of π∗.



Contraction Property of Bellman Optimality Operator

Lemma 3
The Bellman optimality operator of state value is a contraction with respect to
infinity norm,

∥T V1 − T V2∥∞ ≤ γ∥V1 − V2∥∞.

It follows that there exists a unique solution for Bellman optimality equation of
state value.

Proof: The proof is based directly on the following observation:

|max
a
f(a)− max

a
g(a)| ≤ max

a
|f(a)− g(a)|.

▶ Together with Theorem 5 and fixed point theorem, Lemma 3 implies that V∗ is
the unique solution to the Bellman optimality equation. This provides a
tractable and dynamical programming approach to find V∗ in contrast to the
naive search over |A||S| policies.



Optimal Action Value

Definition:

▶ Optimal action value: Q∗(s, a) = maxπ Qπ(s, a),∀ s ∈ S, a ∈ A

Lemma 4
Recalling the definition of optimal state value V∗(s), there hold

Q∗(s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γV∗

(
s′
)]

,

V∗(s) = max
a
Q∗(s, a).

Proof: The equalities follow directly from Theorems 4 and 5.

▶ The optimal policy can be defined as

π∗(a|s) =

1 if a = arg max
a

Q∗(s, a),

0 otherwise.

This fact forms the foundation of Q-learning, which is essentially about
learning optimal action values.



Bellman Optimality Equation for Optimal Action Value

Theorem 6
The optimal action value satisfies the following Bellman optimality equation:

Q∗(s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γ max

a′∈A
Q∗(s′, a′)

]
.

Alternatively, if for any Q ∈ R|S|×|A|, define the Bellman optimality operator:

[FQ](s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γ max

a′∈A
Q(s′, a′)

]
,

Bellman optimality equation can be rewritten as

Q∗ = FQ∗.

That is, Q∗ is a fixed point of F .

▶ F is also a contraction with infinity norm.



Questions?
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