
Algorithmic and Theoretical Foundations of RL

Introduction

Ke Wei
School of Data Science
Fudan University

Success of RL

(Nature, 2016) (Nature, 2019)

(Nature, 2022) (ChatGPT, 2023)

▶ RL has also been used to computationally difficult problems like traveling
salesman problem and plays an important role in “AI for Science”.

Illustration: Super Mario

Super Mario makes a decision, then receives a reward and transfers to the next state; Goal:
high long term cumulative reward by making right decisions.

Challenges in RL

RL is a sequential decision problem and is
essentially about efficient search (dynamic
programming, control, game theory).

▶ High dimension (large state/action spaces)
▶ Highly nonconvex (distribution optimization,
parameterization)

▶ Computational efficiency vs Reliability
▶ Plenty of scenariosM = ⟨S,A,P, r, γ⟩
▶ · · · · · ·

Formal Model: Markov Decision Process (MDP)

next state

Environment

 Agent

reward

state
action

M = ⟨S,A, P, r, γ⟩

▶ S : State space
▶ A: Action space
▶ P(·|s, a): Transition probability
▶ r(s, a, s′): Immediate reward
▶ π(·|s): Policy (probability distribution
on action space)

Agent selects action based on policy at ∼ π(·|st) at state st, receives reward
r(st, at, st+1), and transits to new state following st+1 ∼ P(·|st, at).

Trajectory: τ = (s0, a0, r0, · · · , st, at, rt, · · ·)

Formal Model: Markov Decision Process (MDP)

Trajectory: τ = (s0, a0, r0, · · · , st, at, rt, · · ·)

State value function at s and state-action value function at (s, a):

Vπ (s) := E

[
∞∑
t=0

γtr (st, at, st+1)|s0 = s, π
]
,

Qπ(s, a) := E

[
∞∑
t=0

γtrt|s0 = s, a0 = a
]
.

Goal of RL is to a find a policy that maximizes weighted state values:

max
π

Vπ (µ) , where Vπ (µ) := Es∼µ {Vπ (s)} .

Simple RL Example: GridWorld

 �� ��

 ��

��

 “up”

“down”

“left” “rignt”

�� �� ��
−�

�� �� ��

�� ��
−�

��
 ��

▶ State space: S = {si}9i=1

▶ Action space: A = {ai}4i=1

▶ Reward: r = −5 if hitting “obstacle” grid; r = 10 if arriving at “goal” grid
▶ Goal: Arriving “goal” grid while avoiding “obstacle” grid

Simple RL Example: CartPole

▶ State: s = [x, y, θ, ω] ∈ R4

• x ∈ [−4.8, 4.8]: cart position
• y ∈ R: cart velocity

• θ ∈ [−24◦, 24◦]: pole angle
• ω ∈ R: pole velocity at tip

▶ Action space: A = {left, right }
▶ Reward: r = 1 if the pole remains upright, r = 0 otherwise
▶ Goal: prevent pole from falling over

More typical examples, such as Mountain Car and Cliff Walking, can be found in OpenAI Gym
(https://github.com/openai/gym).

Basic RL Methods

▶ Valued-based methods: not directly optimize policy but seek optimal state or
action values based on fixed point iteration or dynamic programming:

Value IterationPolicy Iteration
sampling−−−−−−→

MC Learning
SARSA
Q-Learning

function−−−−−−−−−−→
approximation

Deep Q-Learning

Basic RL Methods

▶ Policy optimization: directly optimize policy via parameterization πθ(·|s):

Vπθ (µ) = Eτ∼Pπθ
µ

[
∞∑
t=0

γtr(st, at, st+1)

]
,

where Pπθ
µ (τ) = µ(s0)

∏∞
t=0 πθ(at|st)p(st+1|st, at). Then maximize Vπθ (µ) is

finite dimensional optimization problem about θ. Value exists in expression
of policy gradient and policy optimization+value update= Actor-Critic.

▶ Online planning: MCTS (based on UCB for multi-armed bandit).

Policy optimization is also known as policy search, i.e., search over policy space directly. In contrast,
value-based methods update state/action values and retrieve (optimal) policy from (optimal)
state/action values.

Exploration & Exploitation

Since RL is about the search of “best” trajectory, a naive method is exhaustive
search (suppose it is possible). However, computation cost will be prohibitively
high, which requires smart search strategy.

▶ Exploitation: Use information of current experiences for efficient update;
▶ Exploration: Should allow more states and actions to be explored while using
exploitation to reduce computation complexity.

Figure from “Algorithms for decision making” by Kochenderfer et al., 2022

Logistics

▶ Prerequisites: Probability and statistics, numerical optimization
▶ Grading policy: 60% Homework + 40% Final
▶ Homework:

• Homework will be assigned via eLearning;
• Coding language for this course is Python.

▶ Course policies:
• Final exam is closed book.
• Cheating in assignments and exams is not tolerated! Any sort of suspected
cheating will result in zero grade of the corresponding assignments or
exams, followed by penalty subject to university rules.

This course emphasizes basic methods and theory of RL, but hopefully
there will be more practical projects.

Questions?

