
Introduction to Reinforcement Learning

Ke Wei
Fudan University

Success of RL

(Nature, 2016) (Nature, 2019)

(Nature, 2022) (ChatGPT, 2023)

▶ RL has also been used to solve computationally difficult problems such as
traveling salesman problem and plays an important role in “AI for Science”.

Illustration: Super Mario

Super Mario makes a decision, then receives a reward and transfers to the next state;
Goal: high long term cumulative reward by making right decisions.

Challenges in RL

RL is a sequential decision problem and is
essentially about efficient search (dynamic
programming, control, game theory).

▶ High dimension (large state/action spaces)
▶ Highly nonconvex (distribution optimization,
parameterization)

▶ Computational efficiency vs Reliability
▶ Plenty of scenariosM = ⟨S,A,P, r, γ⟩
▶ · · · · · ·

MDP and Basic Setup

Markov Decision Process (MDP)

next state

Environment

 Agent

reward

state
action

Markov chain augmented with decision and reward: M = ⟨S,A, P, r, γ⟩

▶ S : state space (状态空间)
▶ P(·|s, a): state transition model
(状态转移模型)

▶ γ ∈ [0, 1]: discount factor (折扣因子)

▶ A: action space (动作空间)
▶ r(s, a, s′): immediate reward
(即时奖励)

▶ π(·|s) : A → ∆ (策略)

Illustrative Example

▶ three states: S = {s1, s1, s3}
▶ two actions: A = {a1, a2}
Each edge is associated with a
transition probability and a reward.

For instance, we can observe that:

P(s3|s3, a2) = 0.6, P(s2|s3, a2) = 0.4,

r(s3, a2, s3) = −2, r(s3, a2, s2) = −1.

State Value and Action Value

▶ Trajectory (轨迹):

τ = (s0, a0, r0, s1, a1, r1, s2, a2, r2, s3, · · ·), rt = r(st, at, st+1).

▶ Given s0, the probability of trajectory τ is given by

Pπs0(τ) =
∞∏
t=0

π(at|st)P(st+1|st, at).

▶ Infinite horizon discounted return (折扣回报):

r0 + γr1 + γ2r2 + · · · =
∞∑
t=0

γtrt.

Here we consider infinite horizon discounted return which enable us to focus on the stationary policy.
In finite horizon problems, it may be beneficial to select a different action depending on the remaining
time steps which has the form π(s) = (π0(s), π1(s), · · ·).

State Value and Action Value

▶ State value (状态价值函数):

Vπ(s) = Eτ∼Pπs0

[
∞∑
t=0

γtrt|s0 = s
]
, ∀s ∈ S.

State Value and Action Value

▶ Action value (Q-value,动作价值函数):

Qπ(s, a) = Eτ∼Pπs0,a0

[
∞∑
t=0

γtrt|s0 = s, a0 = a
]
, ∀(s, a) ∈ S ×A,

where the probability for τ = (s0, a0, r0, s1, a1, r1, s2, a2, r2, s3, · · ·) is given by

Pπs0,a0(τ) = P(s1|s0, a0)
∞∏
t=1

πt(at|st)P(st+1|st, at).

State Value and Action Value

▶ State and action values can be used to quantify goodness/badness of
policies and actions.

▶ The relation between the state value and the action value is given by

Vπ(s) = Ea∼π(·|s) [Qπ(s, a)] ,
Qπ(s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γVπ(s′)

]
.

▶ Computing the expectation seems not easy. However, the MDP structure
enables us to compute the values by finding the solutions to linear systems
(i.e., Bellman equations).

Bellman Equation for State Value

Theorem
Given policy π, state value satisfies the following Bellman equation:

Vπ(s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γVπ(s′)

]
.

Alternatively, if for any V ∈ R|S|, define the Bellman operator:

[T πV](s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
,

Bellman equation can be rewritten as

Vπ = T πVπ.

That is, Vπ is a fixed point of T π , and can be computed via fixed point iteration.

▶ T π looks one step ahead using policy π.

Matrix Form for Bellman Operator

Lemma
The Bellman operator can be expressed as the following matrix form:

T πV = rπ + γPπV,

where

rπ =


rπ(s1)
...

rπ(sn)

 , Pπ =


pπs1s1 . . . pπs1sn
...

. . .
...

pπsns1 . . . pπsnsn

 ,

and the entries of rπ and Pπ are

rπ(s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′)

]
and pπss′ =

∑
a

π(a|s)P(s′|s, a).

▶ pπss′ is the transition probability from s to s′ under policy π.

Illustrative Example

Consider policy π(a|s) = 0.5 for all s, a
and let γ = 0.9:

Pπ =

 0.3 0.35 0.35

0 1 0

0.15 0.35 0.5

 ,

rπ = [−0.25, 0, 0.2]T,

Vπ = [−0.21, 0, 0.31]T.

We can also verify the correctness of Vπ . Taking the state s0 as an example, it is
not hard to show that

Vπ(s3) =
∑
a

π(a|s3)
∑
s′
p(s′|s3, a)

(
r(s3, a, s′) + γVπ(s′)

)
=0.5 (−1.6 + 0.9× 0.6× 0.31) + 0.5 (2 + 0.9(0.4× 0.31− 0.3× 0.21))

=0.31.

Bellman Equation for Action Value

Theorem
Given policy π, action value satisfies the following Bellman equation:

Qπ(s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γEa′∼π(·|s′)

[
Qπ(s′, a′)

]]
.

Alternatively, if for any Q ∈ R|S|×|A|, define the Bellman operator:

[FπQ](s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γEa′∼π(·|s′)

[
Q(s′, a′)

]]
,

Bellman equation can be rewritten as

Qπ = FπQπ.

That is, Qπ is a fixed point of Fπ .

▶ Fπ also admits a matrix form and it is also a contraction with infinity norm.

Goal of RL

Trajectory: τ = (s0, a0, r0, · · · , st, at, rt, · · ·)

Recall definitions of state value at s and action value at (s, a):

Vπ (s) := E

[
∞∑
t=0

γtr (st, at, st+1)|s0 = s, π
]
,

Qπ(s, a) := E

[
∞∑
t=0

γtrt|s0 = s, a0 = a
]
.

Goal of RL is to a find a policy that maximizes weighted state values:

max
π

Vπ (µ) , where Vπ (µ) := Es∼µ [Vπ (s)] .

Basic RL Methods

▶ Valued-based methods: Not directly optimize policy but seek optimal state or
action values based on fixed point iteration or dynamic programming:

Value IterationPolicy Iteration
sampling−−−−−−→


MC Learning
SARSA
Q-Learning

function−−−−−−−−−−→
approximation

Deep Q-Learning

Basic RL Methods

▶ Policy optimization: Directly optimize policy via parameterization πθ(·|s):

Vπθ (µ) = Eτ∼Pπθ
µ

[
∞∑
t=0

γtr(st, at, st+1)

]
,

where Pπθ
µ (τ) = µ(s0)

∏∞
t=0 πθ(at|st)p(st+1|st, at). Then maximize Vπθ (µ) is

finite dimensional optimization problem about θ. Value exists in expression
of policy gradient and policy optimization+value update= Actor-Critic.

Course: Algorithmic and Theoretical Foundations of RL (https://makwei.github.io/rlIndex.html), also
includes materials about online planning.

Value-Based Methods

Optimal State and Action Values

V∗ (s) := sup
π
Vπ (s) , Q∗ (s, a) := sup

π
Qπ (s, a) .

▶ The optimal state and action values satisfy (Bellman optimality equations)

Q∗(s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γV∗

(
s′
)]

and V∗(s) = max
a
Q∗(s, a).

▶ Given optimal values, an optimal policy can be retrieved as

π∗(a|s) =


1 if a = arg max

a
Es′∼P(·|s,a)

[
r(s, a, s′) + γV∗(s′)

]︸ ︷︷ ︸
Q∗(s,a)

,

0 otherwise.

Value-based methods learn optimal values, then retrieval optimal policies.

Bellman Optimality Equation for Optimal State Value

Theorem
The optimal state value satisfies the following Bellman optimality equation:

V∗(s) = max
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γV∗

(
s′
)]

.

Alternatively, if for any V ∈ R|S|, define the Bellman optimality operator:

[T V](s) = max
a

Es′∼P(·|s,a)
[
r(s, a, s′) + γV

(
s′
)]

,

Bellman optimality equation can be rewritten as

V∗ = T V∗.

That is, V∗ is a fixed point of T .

▶ T is a contraction with infinity norm.

Bellman Optimality Equation for Optimal Action Value

Theorem
The optimal action value satisfies the following Bellman optimality equation:

Q∗(s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γ max

a′∈A
Q∗(s′, a′)

]
.

Alternatively, if for any Q ∈ R|S|×|A|, define the Bellman optimality operator:

[FQ](s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γ max

a′∈A
Q(s′, a′)

]
,

Bellman optimality equation can be rewritten as

Q∗ = FQ∗.

That is, Q∗ is a fixed point of F .

▶ F is a contraction with infinity norm. This is the foundation of Q-learning.

An Overall Framework

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

Overall, different RL algorithms can be viewed as implementing the idea of
alternative update of value and policy in different ways. We first present the
idea in the model based setting.

Value Iteration

Value Iteration (VI): Solve Bellman optimality equation by fixed point iteration,

Vk+1(s) = max
a

Es′∼P(·|s,a)

[
r(s, a, s′) + γVk

(
s′
)]

.

▶ To retrieve a policy after value iteration:

πk+1(a|s) =

1 arg max
a

Es′∼P(·|s,a)

[
r(s, a, s′) + γVk (s′)

]
,

0 otherwise.

Illustrative Example

▶ three states: S = {s0, s1, s2}
▶ two actions: A = {a0, a1}
Each edge is associated with a
deterministic transition and a reward.

Suppose we start from V0 = 0. Then

Vk (s0) = r (s0, a0, s0) + γVk−1 (s0) = γVk−1 (s0) = γkV0 (s0) = 0,

Vk (s2) = r (s2, a0, s2) + γVk−1 (s2) = 1 + γVk−1 (s2) =
1− γk

1− γ
+ γkV0 (s2) =

1− γk

1− γ
,

Vk (s1) = max
{
r (s1, a0, s2) + γVk−1 (s2) , r (s1, a1, s0) + γVk−1 (s0)

}
= max

{
γ

1− γ

(
1− γk−1

)
,R
}
.

Thus (assuming R < γ
1−γ

),

V∗ (s0) = 0, V∗ (s1) =
γ

1− γ
, V∗ (s2) =

1

1− γ
.

Asynchronous Value Iteration

State values in VI are updated synchronously. An alternative is asynchronous
value iteration: Rather than sweeping through all states to create a new value
vector, only updates one state (an entry of vector) at a time.

Gauss-Seidel Value Iteration:

for s = 1, 2, 3, ...

V (s)← max
a

Es′∼P(·|s,a)
[
r
(
s, a, s′

)
+ γV

(
s′
)]

Policy Iteration

π0
E−−→ Vπ0 I−→ π1

E−−→ Vπ1 I−→ π2
E−−→ · · · I−→ π∗

There are two ingredients in Policy Iteration (PI).

Policy Evaluation:
Vπk = rπk + γPπkVπk .

Policy Improvement:

πk+1 (a|s) =


1 a = arg max

a
Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γVπk

(
s′
)]︸ ︷︷ ︸

Qπk (s,a)

,

0 otherwise.

Illustrative Example

Consider the example in following figure, where each state is associated with
three possible actions: al, a0, ar (move leftwards, stay unchanged, and move
rightwards). The reward is rs1 = -1 and rs2 = 1. The discount rate is γ = 0.9.

(a) (b)

Assume the initial policy π0 is given in (a). This policy satisfies π0(a0|s1) = 1 and
π0(al|s2) = 1. This policy is not good because it does not move toward s2. We
next apply policy iteration problem.

Illustrative Example

▶ Policy EvaluationVπ0 (s1) = −1 + γVπ0 (s1)
Vπ0 (s2) = −1 + γVπ0 (s1)

⇒

Vπ0 (s1) = −10
Vπ0 (s2) = −10

▶ Policy Improvement

Qπ0(s, a) aℓ a0 ar
s1 − −10 −8
s2 −10 −8 −

Since π1 choose the action that maximize Qπ0(s, a), one has (see (b)):

π1 (ar|s1) = 1, π1 (a0|s2) = 1.

It is evident that this is an optimal policy.

Monte Carlo (MC) Learning

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

Policy Iteration: greedy policy is improved via

πk+1(s) = arg max
a

Es′∼P(·|s,a)[r(s, a, s′) + γVπk(s′)]︸ ︷︷ ︸
Qπk (s,a)

,

where Qπk(s, a) is evaluated via Bellman equation based on the model.
— What if system information (P and r) is not available?

— Replace model by data (model free).
— How to collect data? How to use data?

— · · · · · ·

MC Policy Evaluation

Basic idea. Given π, estimate Vπ(s) and Qπ(s, a) from sampled trajectories

τi = {(si0, ai0, ri0, si1, ai1, ri1, · · ·)}ni=1 ∼ π.

▶ MC evaluation of Vπ(s): si0 = s,

Vπ(s) ≈ 1

n

n∑
i=1

(
∞∑
t=0

γtrit

)
.

▶ MC evaluation of Qπ(s, a): si0 = s, ai0 = a,

Qπ(s, a) ≈ 1

n

n∑
i=1

(
∞∑
t=0

γtrit

)
.

Use Trajectory More Efficiently

Trajectory (s0, a0, r0, s1, a1, r1, · · ·) ∼ π starting from s contains sub-trajectories
(st, at, rt, st+1, at+1, rt+1, · · ·) that starts from other states (e.g. st = s′). Thus,
return from the sub-trajectory

Gt =
∞∑
t′=t

γt
′−trt′

can be used to build an estimator of Vπ(s′). Namely, one trajectory can be used
to estimate different Vπ(s).

There is no essential difference in the MC evaluations of state value and action value in methodology.

First-Visit and Every Visit

First Visit

▶ Only sub-trajectory that starts from the first visit of s is used in the estimation
of Vπ(s); One trajectory is only used once in the evaluation of Vπ(s).

Every Visit

▶ All sub-trajectories that start from of s is used in the estimation of Vπ(s); One
trajectory might be used many times in the evaluation of Vπ(s).

Incremental Update

Given a new single estimation G of state value or action value,

▶ state value update:

N(st)← N(st) + 1, V(st)← V(st) +
1

N(st)
(G− V(st));

▶ action value update:

N(st, at)← N(st, at) + 1, Q(st, at)← Q(st, at) +
1

N(st, at)
(G− Q(st, at)).

MC Learning with ϵ-Greedy Policy

Algorithm 1: MC Learning with ϵ-Greedy Exploration

Initialization: N(s, a) = 0,Q(s, a) = 0, ∀s, a, π0

for k = 0, 1, 2, . . . do
Initialize s0 and sample an episode following πk:

(s0, a0, r0, s1, a1, r1, · · · , sT−1, aT−1, rT−1, sT) ∼ πk

G← 0

for t = T− 1, T− 2, . . . , 0 do
G← γG+ rt
if (st, at) does not appear in (s0, a0, s1, a1, . . . , st−1, at−1) then

N(st, at)← N(st, at) + 1

Q(st, at)← Q(st, at) + 1
N(st,at) (G− Q(st, at))

Update policy of visited state via ϵk-greedy:

πk+1(a|st) =

1− ϵk +
ϵk
|A| if a = arg max

a′
Q(st, a′)

ϵk
|A| otherwise

end
end

end

Temporal-Difference (TD) Learning

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

▶ Model-based evaluation: Solve Bellman equation accurately based on model;
▶ MC evaluation: Value estimation via sample mean;
▶ TD evaluation: Solve Bellman equation in a stochastic and online manner.

TD Policy Evaluation of Action Values

Recall that the Bellman equation for Q-values is

Qπ(s, a) = [FπQπ](s, a) = Es′∼P(·|s,a)
[
r(s, a, s′) + γEa′∼π(·|s′)

[
Qπ(s′, a′)

]]
= Es′∼P(·|s,a)Ea′∼π(·|s′)

[
r(s, a, s′) + γQπ(s′, a′)

]
, (s, a) ∈ S ×A.

The Bellman iteration for computing Q-values is given by

Qt+1(s, a) = Es′∼P(·|s,a)Ea′∼π(·|s′)

[
r(s, a, s′) + γQt(s′, a′)

]
= Qt(s, a) + αt(s, a)

(
Es′∼P(·|s,a)Ea′∼π(·|s′)

[
r(s, a, s′) + γQt(s′, a′)

]
− Qt(s, a)

)
.

Given a random sample (s, a, r, s′, a′), the RM algorithm is

Qt+1(s, a) = Qt(s, a) + αt(s, a)
(
r(s, a, s′) + γQt(s′, a′)− Qt(s, a)

)
.

TD evaluation of actions values implements this in an online manner.

SARSA: On Policy TD Learning

Algorithm 2: SARSA
Initialization: Q0(s, a) = 0, s0, π0, a0 ∼ π0(·|s0)
for t = 0, 1, 2, . . . do

Sample a tuple (st, at, rt, st+1, at+1) ∼ πt from (st, at)
Qt+1 (st, at) = Qt (st, at) + αt (st, at)

(
rt + γQt (st+1, at+1)− Qt (st, at)

)
Update policy of visited state via ϵt-greedy:

πt+1(a|st) =

1− ϵt +
ϵt
|A| if a = arg max

a′
Qt+1(st, a′),

ϵt
|A| otherwise.

end

▶ SARSA is the abbreviation of “state-action-reward-state-action”, and it is an
on policy algorithm which updates the policy after every time step.

Q-Learning: Off-Policy TD-Learning

Recall that the optimal state-action values Q∗ is the fixed point of the Bellman
optimality operator F where

[FQ] (s, a) = Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γ ·max

a′∈A
Q
(
s′, a′

)]
, (s, a) ∈ S ×A.

It can be shown that F is a contraction with factor γ. Assuming the model
(probability transition model) is known we can find Q∗ via Q-value iteration:

Qt+1(s, a) = [FQt](s, a)
= Qt(s, a) + αt(s, a)([FQt](s, a)− Qt(s, a)), (s, a) ∈ S ×A.

Q-learning is a model free and online implementation of Q-value iteration:
Sample a tuple (s, a, r, s′) via a behavior policy, noting that

r+ γ ·max
a′∈A

Qt
(
s′, a′

)
is an unbiased estimator of FQt (s, a), we can update action-value at (s, a) by

Qt+1 (s, a) = Qt (s, a) + αt (s, a)
(
r+ γ ·max

a′∈A
Qt
(
s′, a′

)
− Qt (s, a)

)
.

Q-Learning: Off-Policy TD-Learning

Algorithm 3: Q-Learning
Initialization: Q0(s, a) = 0, s0
for t = 0, 1, 2, . . . do

Sample a tuple (st, at, rt, st+1) ∼ bt from st, where bt is a behavior policy
Update Q-value at visited state-action pair (st, at):

Qt+1 (st, at) = Qt (st, at)+αt (st, at)
(
rt + γ ·max

a′∈A
Qt
(
st+1, a′

)
− Qt (st, at)

)
end

Value Function Approximation (VFA)

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

Approximately represent state/action values with functions

Vπ(s) ≈ V(s;ω) or Qπ(s, a) ≈ Q(s, a;ω)

▶ Learn parameter ω instead of state/action value directly
▶ Generalize from seen states/actions to unseen states/actions

Policy Evaluation of Actions Values with VFA

With an oracle for Qπ(s, a), we can form the following optimization problem

min
ω
J(ω) = E(s,a)∼D

[
∥Q(s, a;ω)− Qπ(s, a)∥22

]
.

The SGD for this problem is given by

ωt+1 = ωt + αt · (Qπ(s, a)− Q(s, a;ωt))∇ωQ(s, a;ωt).

Sample a tuple (s, a, r, s′, a′). We can estimate Qπ(s, a) by r+ γ · Q(s′, a′;ωt),
yielding the update

ωt+1 = ωt + αt · (r+ γ · Q(s′, a′;ωt)− Q(s, a;ωt))∇ωQ(s, a;ωt).

Linear VFA of Action Values

In linear VFA for action values, we have

Q(s, a;ω) = ϕ(s, a)Tω, where ω ∈ Rn and


ϕ1(s, a)
ϕ2(s, a)

...
ϕn(s, a)

 ∈ Rn.

It is clear that ∇ωQ(s, a;ω) = ϕ(s, a).

SARSA with Linear VFA

Algorithm 4: SARSA with Linear VFA
Initialization: ϕs,a, s0, π0, a0 ∼ π0(s0)
for t = 0, 1, 2, ... do

Sample a tuple (st, at, rt, st+1, at+1) ∼ πt from (st, at)
ωt+1 = ωt + αt

(
rt + γ · ϕ(st+1, at+1)

Tωt − ϕ(st, at)Tωt
)
ϕ(st, at)

Update policy of visited state via ϵt-greedy:

πt+1(a|st) =

1− ϵt +
ϵt
|A| if a = arg max

a′
ϕ(st, a′)Tωt+1,

ϵt
|A| otherwise.

end

Q-Learning with Linear VFA

In Q-learning Q(s, a;ω) is used to approximate Q∗(s, a). Having a transition
(st, at, rt, st+1) ∼ bt, we can construct rt + γ ·max

a
Q (st+1, a;ωt) as a better

estimation of Q∗(st, at) than Q(st, at;ωt) since one-step lookahead reward rt is
accurate (or approximate error is discounted by γ), and update ωt via

ωt+1 = ωt + αt
(
rt + γ ·max

a
Q (st+1, a;ωt)− Q(st, at;ωt)

)
∇ωQ(st, at;ωt)

to reduce L (ω) = 1
2

(
rt + γ ·max

a
Q (st+1, a;ωt)− Q (st, at;ω)

)2
.

Algorithm 5: Q-Learning with linear VFA
Initialization: ϕ(s, a), s0
for t = 0, 1, 2, ... do

Sample a tuple (st, at, rt, st+1) ∼ bt from st where bt is a behavior policy
Update parameter

ωt+1 = ωt + αt
(
rt + γ ·max

a
ϕ(st+1, a)Tωt − ϕ(st, at)Tωt

)
ϕ(st, at)

end

Q-Learning with VFA as Approximate Q-Value Iteration

Recall that the Q-value iteration has the following form:

Qt+1 = FQt, where [FQ] (s, a) = Es′∼P(·|s,a)

[
r
(
s, a, s′

)
+ γ ·max

a′∈A
Q
(
s′, a′

)]
.

With Qt being replaced by Q(:;ωt), there may not be a function Q(:;ωt+1) such
that Q(:;ωt+1) = FQ(:;ωt) holds exactly. We can solve for Q(:;ωt+1) via

ωt+1 = arg min
ω

E(s,a)∼D
[
(Q(s, a;ω)− [FQ](s, a;ωt))2

]
= arg min

ω
E(s,a)∼D,s′∼P(·|s,a)

[(
Q(s, a;ω)−

(
r(s, a, s′) + γ ·max

a′∈A
Q(s′, a′;ωt)

))2]
.

Solving it via one step SGD yields Q-learning with VFA.

Batch Method

Let D = {(si, ai, ri, s′i)}
n
i=1 be a batch of experience data. At time t, we can form

an sample version of E(s,a)∼D
[
(Q(s, a;ω)−FQ(s, a;ωt))2

]
and update ω by

finding a solution to the empirical risk minimization (or regression) problem

ωt+1 = arg min
ω

n∑
i=1

(
Q(si, ai;ω)−

(
ri + γ ·max

a′∈A
Q(s′i , a′;ωt)

))2
.

Solving this problem by batch SGD yields an instance of Fitted Q-Iteration.

Fitted Q-Iteration (FQI): Offline Approximate Q-Value Iteration

Algorithm 6: FQI
Initialization: Dataset D = {(si, ai, ri, s′i)}

n
i=1, initial VFA parameter ω

for t = 0, 1, 2, ... until some stopping criterion is met do
Copy parameter: ω̃ ← ω

for k = 0, 1, 2, ... until some stopping criterion is met do
Sample a mini-batch B of D
ω ← ω+α

∑
(si,ai,ri,s′i)∈B (ri + γ ·max

a′
Q(s′i , a′; ω̃)− Q (si, ai;ω))∇ωQ (si, ai;ω)

end
end

Deep Q-Learning

Deep Q-learning is a variant of FQI which uses deep neural network for VFA and
adopts incremental learning by maintaining a buffer and experience replay.

Algorithm 7: DQN
Initialization: Replay buffer D to capacity N, Q network Q(s, a;ω) with ω,
target Q network q(s, a; ω̃) with ω̃ = ω, SGD iteration number C, k = 0, and s0
for t = 0, 1, 2, ... until some stopping criterion do

k← k+ 1

Sample a tuple (st, at, rt, st+1) ∼ bt from st and add it to buffer D
sample a mini-batch B of D
ω ← ω+α

∑
(si,ai,ri,s′i)∈B (ri + γ ·max

a′
Q(s′i , a′; ω̃)− Q (si, ai;ω))∇ωQ (si, ai;ω)

if k == C then
ω̃ ← ω

k← 0
end

end

Policy Optimization

Value-Based RL vs Policy-Based RL

evaluation

improvement

greedy strategy

ε-greedy strategy

policy gradient

model-based evaluation

MC evaluation

TD evaluation

value function approximation

▶ Value-based RL: Learn optimal values and policy is implicitly inferred;
▶ Policy-based RL: Parametrize policy and conduct search in policy space.

Policy-Based RL

Consider a policy parameterization (which is essentially about how to represent
a distribution) such that :

πθ(·|s) defines a probability distribution on A.

Note that once θ is given, policy is determined.

Goal: Search for best θ subject to certain performance measure.
Typical advantages of policy-based methods include:

▶ Better convergence properties
▶ Effective in high dimensional or continuous action spaces
▶ Can learn stochastic policies

Policy Optimization

Consider average state value with initial distribution µ as performance measure:

Vπθ (µ) = Es0∼µ [Vπθ (s0)] = Eτ∼Pπθ
µ

[r(τ)] ,

where given τ = (st, at, rt)∞t=0,

Pπθ
µ (τ) = µ(s0)

∞∏
t=0

πθ(at|st)P(st+1|st, at) and r(τ) =
∞∑
t=0

γtrt.

It is natural to formulate RL as

θ∗ = arg max
θ

Vπθ (µ).

For simplicity, we only discuss the case where sate and action spaces are discrete.

Performance Difference Lemma

Given a policy π, the advantage function is defined as

Aπ (s, a) = Qπ (s, a)− Vπ (s) ,

which measures how well a single action is compared with average state value.

Lemma (Performance Difference Lemma)
For any two policies π1, π2, one has

Vπ1(µ)− Vπ2(µ) =
1

1− γ
Es∼dπ1

µ

[
Ea∼π1(·|s) [A

π2(s, a)]
]
.

Policy Gradient Theorem

Theorem (Policy Gradient Theorem)
Recalling the definition of visitation measure, we have

∇θVπθ (µ) = Eτ∼Pπθ
µ

[
∞∑
t=0

γtQπθ (st, at)∇θ logπθ(at|st)
]

=
1

1− γ
Es∼dπθ

µ
Ea∼πθ(·|s) [Q

πθ (s, a)∇θ logπθ(a|s)] .

▶ Policy gradient theorem expresses policy gradient as a weighted average of
∇θ logπθ(a|s) over all state-action pairs. Note that ∇θ logπθ(a|s) is direction
that πθ(a|s) increases (i.e., probability of selecting a at s increases).

Policy Gradient in Terms of Advantage Function

Theorem (Policy Gradient in Terms of Advantage Function)
We have

∇θVπθ (µ) =
1

1− γ
Es∼dπθ

µ
Ea∼πθ(·|s) [A

πθ (s, a)∇θ logπθ(a|s)] ,

provided
∑
a
πθ(a|s) = 1 for any θ.

Proof. The result follows from the fact

Ea∼πθ(·|s) [∇θ logπθ(a|s)| = ∇θ

(∑
a

πθ(a|s)
)
= 0.

Policy Gradient Ascent

θ ← θ + α · Es,a [Qπθ (s, a)∇θ logπθ(a|s)]

= θ + α · Es,a
[
Qπθ (s, a)
πθ(a|s)

∇θπθ(a|s)
]

▶ Large Qπθ (s, a) means that weight in front of the direction ∇θπθ(a|s) is large.
Thus, the method attempts to exploit actions with large action values.

▶ Small πθ(a|s) means that weight in front of the direction ∇θπθ(a|s) is large.
This reflects that the method attempts to explore actions with low probability.

▶ Policy gradient method also fits into the framework of policy evaluation and
policy improvement, where policy evaluation affects direction to improve the
policy and policy improvement is achieved by updating policy parameter.
Thus, analysis of policy gradient methods often boils down to analysis of
improvement ability in policy domain.

Example: Softmax Parameterization

Lemma
The policy gradient under softmax parameterization is given by

∇θsVπθ (µ) =
dπθ
µ (s)
1− γ

πθ(·|s)Aπθ (s, ·).

▶ Softmax PG: in the parameter space,

θ+s,a = θs,a + η
dπθ
µ (s)
1− γ

πθ(a|s)Aπθ
τ (s, a).

In the policy space,

π+
s,a ∝ πs,a exp

(
η
dπ
µ(s)

1− γ
πθ(a|s)Aπθ

τ (s, a)
)
.

Trust Region Policy Optimization (TRPO)

Given a policy πθt , by performance difference lemma, we can rewrite Vπθ (µ) as

Vπθ (µ) = Vπθt (µ) +
1

1− γ
Es∼dπθ

µ
Ea∼πθ(·|s) [A

πθt (s, a)] .

Since we do not have access to dπθ
µ , instead maximize the approximation:

max
θ

Vt(θ) = Vπθt (µ) +
1

1− γ
E
s∼d

πθt
µ

Ea∼πθ(·|s) [A
πθt (s, a)].

Overall Idea

Trust Region Policy Optimization (TRPO)

▶ Assume
∑

a πθ(a|s) = 1 for any θ. It is easy to see that Vπθ (µ) and Vt(θ) match
at θt up to first derivative.

▶ It can be shown that

Vπθ (µ) ≥ Vt(θ)−
2γεt

(1− γ)2
max
s

KL(πθt(·|s)∥πθ(·|s)),

where εt = maxs,a |Aπθt (s, a)|.

See “Trust region policy optimization” by Schulman et al. 2017 for derivation of second fact.

Two Facts

Trust Region Policy Optimization (TRPO)

The second fact suggests that we may seek a new estimator by maximizing Vt(θ)
in a small neighborhood of θt:

max
θ

Vt(θ) subject to max
s

KL(πθt(·|s)∥πθ(·|s)) ≤ δ.

Moreover, replace constraint by the average version and instead solve

max
θ

Vt(θ) subject to E
s∼d

πθt
µ

[KL(πθt(·|s)∥πθ(·|s))] ≤ δ.

Trust Region Policy Optimization (TRPO)

After linear approximation to Vt(θ) and quadratic approximation to KL at θt,

Vt(θ) ≈ (∇θVπθt (µ))T(θ − θt), Es∼d
πθt
µ

[KL(πθt(·|s)∥πθ(·|s))] ≈
1

2
(θ − θt)

TF(θt)(θ − θt),

we arrive at the same problem as that for NPG,

max
θ

(∇θVπθt (µ))T(θ − θt) subject to 1

2
(θ − θt)

TF(θt)(θ − θt) ≤ δ.

▶ TRPO is overall natural policy gradient (NPG) with adaptive line search.

Proximal Policy Optimization (PPO)

Recall from last section that

Vt(θ) ∝ E
s∼d

πθt
µ

Ea∼πθ(·|s) [A
πθt (s, a)]

= E
s∼d

πθt
µ

Ea∼πθt (·|s)

[
πθ(a|s)
πθt(a|s)

Aπθt (s, a)
]
,

serves as a surrogate function of true target in small region around θt.

PPO keeps new policy close to old one through clipped objective.

PPO with Clipped Objective

Let r(θ) = πθ(a|s)
πθt (a|s)

. Then r(θt) = 1. The clipped objective function is given by

Vclipt (θ) = E
s∼d

πθt
µ

Ea∼πθt (·|s)

[
min

(
r(θ)Aπθt (s, a), clip (r(θ), 1− ϵ, 1 + ϵ) Aπθt (s, a)

)]
,

where

clip (r(θ), 1− ϵ, 1 + ϵ) =


1 + ϵ, r(θ) > 1 + ϵ,

r(θ), r(θ) ∈ [1− ϵ, 1 + ϵ],

1− ϵ, r(θ) < 1− ϵ.

▶ The min operation ensure Vclipt (θ) provides a lower bound. Since a maximal
point will be computed subsequently, min will not cancel the effect of clip.

▶ PPO policy update (in expectation): θt+1 = arg maxθ V
clip
t (θ).

▶ In flat region, gradient of Vclipt (θ) is zero, thus won’t move far from θt is using
policy gradient type method to solve the sub-problem.

See “Proximal policy optimization algorithms” by Schulman et al. 2017 for details.

MC Evaluation of Policy Gradient

The expectation in policy gradient expression requires MC evaluation.

▶ Sample N episodes:

τ (i) = (s(i)0 , a(i)0 , r(i)0 , · · · , s(i)T−1, a
(i)
T−1, r

(i)
T−1, s

(i)
T) ∼ πθ;

▶ Use return Gt =
∑T−1

t′=t γ
t′−trt′ as an unbiased estimate of Qπθ (st, at):

∇θVπθ (µ) ≈ 1

N

N∑
i=1

T−1∑
t=0

γtG(i)
t ∇θ logπθ(a(i)t |s

(i)
t).

As illustration, we present policy gradient ascent with MC evaluation next.

REINFORCE

Algorithm 8: REINFORCE
Initialization: πθ(a|s) and θ0.
for k = 0, 1, 2, . . . do

Sample episodes Dk = {τ (i)}:

τ (i) = (s(i)0 , a(i)0 , r(i)0 , · · · , s(i)T−1, a
(i)
T−1, r

(i)
T−1, s

(i)
T) ∼ πθk

Policy gradient calculation:

gk =
1

|Dk|

|Dk|∑
i=1

T−1∑
t=0

γtG(i)
t ∇θ logπθk(a

(i)
t |s

(i)
t)

Policy parameter update:

θk+1 = θk + αkgk

end

Actor-Critic Methods

Value Function
Approximation

Policy
Parameterization

Actor
CriticValue-Based Policy-Based

▶ Value-based: Learn value function
▶ Policy-based: Learn policy function
▶ Actor-critic: Learn value and policy functions

Actor-Critic Methods

Motivation. MC policy gradient evaluation is sample inefficient and has high
variance. Similar to VFA in value-based RL, we can approximate values that
appears in policy gradient and update VFA parameters in learning process.

▶ Actor: Learn parameterized policy πθ via policy gradient;
▶ Critic: Learn value function V(:;ω) or Q(:;ω) in ∇Vπθ (µ) via policy evaluation.

Recall TD evaluation for state value and action value parameter as follows:

(State value) δt = rt + γ · V(st+1;ω)− V(st;ω)
ω ← ω + αt δt∇ωV(st;ω)

(Action value) δt = rt + γ · Q(st+1, at+1;ω)− Q(st, at;ω)
ω ← ω + αt δt∇ωQ(st, at;ω)

Action-Value Actor-Critic

Algorithm 9: Action-Value Actor-Critic
Initialization: policy parameters θ0, action value function parameter ω0.
for t = 0, 1, · · · do

Sample a tuple (st, at, rt, st+1, at+1) ∼ πθ

Calculate δt ← rt + γ · Q(st+1, at+1;ω)− Q(st, at;ω)
Critic update: ω ← ω + αt δt∇ωQ(st, at;ω)
Actor update: θ ← θ + βt Q(st, at;ω)∇θ logπθ (at|st)

end

There are other versions of actor-critic, for example, the parameters are only updated at the end of
an episode by using all the episode data simultaneously.

Advantage Actor-Critic Method (A2C)

In A2C, advantage function expression for policy gradient is used and value
function approximation is applied to state values:

Q(st, at) ≈ rt + γV(st+1;ω), A(st, at) ≈ rt + γV(st+1;ω)− V(st;ω)︸ ︷︷ ︸
δt

Algorithm 10: Advantage Actor-Critic (A2C)
Initialization: policy parameters θ0, state value function parameter ω0.
for t = 0, 1, · · · do

Sample a tuple (st, at, rt, st+1) ∼ πθ

Calculate δt ← rt + γV(st+1;ω)− V(st;ω)
Critic update: ω ← ω + αt δt∇ωV(st;ω)
Actor update: θ ← θ + βt δt∇θ logπθ (at|st)

end

Entropy Regularization

Entropy Regularized State Value

Given a policy π, the average entropy regularized state value is given by

Vπτ (µ) =
1

1− γ
Es∼dπµ

{
Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)

]
+ τH(π(·|s))

}
=

1

1− γ
Es∼dπµEa∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)− τ logπ(a|s)

]
= E

[
∞∑
t=0

γt (r(st, at, st+1 − τ logπ(at|st))) | s0 ∼ µ, π

]
,

where H(p) =
∑

a pa logpa is the entropy of a probability distribution.

▶ Entropy regularized state value at s, denoted Vπτ (s), can be similarly defined.
▶ In addition to the perspective based on entropy regularization for more
exploration, it can also be interpreted as encouraging exploration via revising
the reward (the third equation).

In this section, we will use τ to denote the regularization parameter, which should be distinguished
from the trajectory.

Bellman Equation and Operator

It is clear that Vπτ (µ) satisfies the following Bellman equation

Vπτ (s) = Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′)− τ log(a|s) + γVπτ (s′)

]
.

Define the Bellman operator as follows

T π
τ V(s) = Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)− τ log(a|s) + γV(s′)

]
.

It is easy to see that T π
τ is of γ-contraction and Vπτ is a fixed point of T π

τ .

Entropy Regularized Action Value

The entropy regularized action value is defined as

Qπ
τ (s, a) = Es′∼P(·|s,a)

[
r(s, a, s′) + γVπτ (s′)

]
.

Note that we choose not to include −τ logπ(a|s) here. One immediately has

Vπτ (s) = Ea∼π(·|s) [Qπ
τ (s, a)− τ logπ(a|s)] .

▶ Action value is state value where initial policy is deterministic, thus entropy 0.
▶ It is convenient to give the maximum improvement policy (similar to PI
policy). That is, the solution to

max
π
T π
τ V(s) = max

π
Ea∼π(·|s)Es′∼P(·|s,a)

[
r(s, a, s′)− τ log(a|s) + γV(s′)

]
is π(·|s) ∝ exp(QV(s, ·)/τ), where QV(s, a) = Es′∼P(·|s,a) [r(s, a, s′) + γV(s′)].
Entropy regularization moves the maxima to the interior so that it has an
explicit solution in terms of softmax representation.

Performance Difference Lemma

Define the advantage function

Aπτ (s, a) = Qπ
τ (s, a)− τ logπ(a|s)− Vπτ (s).

It is evident that Ea∼π(·|s) [Aπτ (s, a)] = 0.

Lemma
One has

T π1
τ Vπ2

τ (s)− Vπ2
τ (s) = Ea∼π(·|s) [Aπτ (s, a)]− τKL(π1(·|s)∥π2(·|s)).

Lemma (Performance Difference Lemma)
There holds

Vπ1
τ (µ)− Vπ2

τ (µ) =
1

1− γ

∑
s
dπ1
µ (s) (T π1

τ Vπ2
τ (s)− Vπ2

τ (s)) .

Optimality

Define the Bellman optimality operator Tτ as follows:

TτV(s) = max
π

Ea∼π(·|s)Es′∼P(·|s,a)
[
r(s, a, s′)− τ log(a|s) + γV(s′)

]
.

Then Tτ is monotone and γ-contraction with respect to ∥ · ∥∞.

Theorem (Optimality)
Let V∗τ be the solution to the Bellman optimality equation TτV(s) = TτV(s). Then

V∗τ (s) = max
π

Vπτ (s).

Moreover, there exists an optimal policy π∗ such that Vπ∗
τ = V∗τ .

Optimality

Proposition
Define Q∗

τ (s, a) = Es′∼P(·|s,a) [r(s, a, s′) + γV∗τ (s′)] . It is evident that

Q∗
τ (s, a) = max

π
Qπ

τ (s, a), ∀s, a.

Moreover, one has π∗(·|s) ∝ exp (Q∗
τ (s, ·)/τ) and

V∗τ (s) = Q∗
τ (s, a)− τ logπ∗(a|s)⇔ A∗τ (s, a) = 0, ∀a.

▶ Recall that for the non-regularized case, one has A∗(s, a) ≤ 0, ∀a. Moreover,
A∗τ (s, a) = 0, ∀a guarantees Ea∼π∗(·|s) [A∗τ (s, a)] = 0 even π∗(·|s) > 0, ∀a.

Lemma (Sub-Optimality Lemma)
There holds

V∗τ (µ)− Vπτ (µ) =
τ

1− γ

∑
s
dπ
µ(s)KL(π(·|s)∥π∗(·|s)).

Reverse Direction

Theorem
If

V(s) = Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
− τ logπ(a|s), ∀s, a,

then V = V∗τ and π = π∗
τ .

Proof. Taking expectation with respect to π(·|s) on both sides yields V = Vπτ .
Thus, V is a value function. By Lemma 5 in Lecture 7, the condition also means

π(·|s) = arg max
π̃(·|s)

Ea∼π̃(·|s)Es′∼P(·|s,a)
[
r(s, a, s′) + γV(s′)

]
− τ log π̃(a|s),

which implies TτV(s) = V(s).

▶ This result essentially states that if Aπτ (s, a) = 0,∀ s, a, then π is the optimal
policy. It is parallel to the non-regularized case: if Aπ(s, a) ≤ 0, ∀ s, a, then π

is an optimal policy.

Remark

▶ The optimal policy is unique with entropy regularization.
▶ It is evident that as τ → 0, π∗

τ (a|s)→ 0 for a ̸∈ arg maxQ∗(s, a).
▶ Since one has

max
a
Q∗

τ (s, a) ≤ τ log
(
∥exp (Q∗

τ (s, ·) /τ)∥1
)
≤ τ log |A|+ max

a
Q∗

τ (s, a),

it is easy to see that V∗τ (s)→ maxa Q∗(s, a) = V∗(s) as τ → 0.

Soft Policy Iteration

Soft Policy Iteration:

πk+1(·|s) = arg max
π

T π
τ Vπkτ =

exp
(
Qπk

τ (s, ·)/τ
)

∥ exp
(
Qπk

τ (s, ·)/τ
)
∥1

.

▶ γ-rate convergence, with local quadratic convergence.

“Elementary Analysis of Policy Gradient Methods” by Jiacai Liu, Wenye Li, and Ke Wei, 2024.

Policy Gradient Theorem

Theorem (Policy Gradient Theorem)
Assume ∀θ,

∑
a πθ(a|s) = 1 for simplicity. One has

∇Vπθ
τ (µ) =

1

1− γ
Es∼dπθ

µ
Ea∼πθ(·|s) [A

πθ
τ (s, a)∇θ logπθ(a|s)] .

Example: Softmax Parameterization

Lemma
For softmax parameterization,

∇θsVπθ
τ (µ) =

dπθ
µ (s)
1− γ

πθ(·|s)Aπθ
τ (s, ·).

▶ Entropy softmax PG: in the parameter space,

θ+s,a = θs,a + η
dπθ
µ (s)
1− γ

πθ(a|s)Aπθ
τ (s, a).

In the policy space,

π+
s,a ∝ πs,a exp

(
η
dπ
µ(s)

1− γ
πθ(a|s)Aπθ

τ (s, a)
)
.

Questions?

	MDP and Basic Setup
	Value-Based Methods
	Value Iteration and Policy Iteration
	Monte Carlo Learning

	Policy Optimization
	Entropy Regularization

