Introduction to Reinforcement Learning

Ke Wei
Fudan University

Success of RL

"5 AlphaGo

(Nature, 2016) (Nature, 2019)

& cChatGPT

(Nature, 2022) (ChatGPT, 2023)

» RL has also been used to solve computationally difficult problems such as
traveling salesman problem and plays an important role in “Al for Science”.

Illustration: Super Mario

—

MARIO HWORLD TIME
000000 1xO0O 1=-1 2913

Super Mario makes a decision, then receives a reward and transfers to the next state;
Goal: high long term cumulative reward by making right decisions.

Challenges in RL

RL is a sequential decision problem and is
‘ essentially about efficient search (dynamic

programming, control, game theory).

P » High dimension (large state/action spaces)

\ » Highly nonconvex (distribution optimization,
parameterization)

» Computational efficiency vs Reliability

» Plenty of scenarios M = (S, A,P,r,v)

MDP and Basic Setup

Markov Decision Process (MDP)

action
a,~n(-|s;)

state s;

- 1 =71(St, g, Se1)

I | : l
1 Environment -=

i next state
Ser1 ~ PC st ar)

I
|
I
reward I
I
I
I

Markov chain augmented with decision and reward: M = (S, A, P, r,v)

> S: state space (fRkZ5751A]) » A: action space (Z{E23])
> P(:|s,a): state transition model » r(s,a,s’): immediate reward
CIRAFE R) (P 32 55l)

» v € [0, 1]: discount factor (30 1) » 7(|s) : A — A (%)

Illustrative Example

» three states: S = {s1,51,53}
» two actions: A = {ai, a=}

Each edge is associated with a
transition probability and a reward.

For instance, we can observe that:

P(S3|S3,02) = 0.6, P(52|53702) = 0.4,
r(ss,a2,83) = —2, r(ss,02,52) = —1.

State Value and Action Value

» Trajectory (L)
T = (S0, 0o, ro,S1,0Q1,r1,S2,0z2,r2,S3,- -), It =r(St,qt,Se+1).

» Given sy, the probability of trajectory 7 is given by
PL (1) = [[(atlse)P(strast, ar).
t=0
» Infinite horizon discounted return (3741 [E4R):

(oo}
ro +~r +W2I'2 +--= Z’Ytrt-
t=0

Here we consider infinite horizon discounted return which enable us to focus on the stationary policy.
In finite horizon problems, it may be beneficial to select a different action depending on the remaining
time steps which has the form 7 (s) = (7o(s), m1(s), -).

State Value and Action Value

» State value CIRZSHME EEL):

V7(s) = Ervpy |:Z'y rtso_s] VseS.

State Value and Action Value

» Action value (Q-value, Zh{EHE %)

oo

Q7(5,0) = Erpy . | D A'lSo =5,a0 =a|, V(s,0) €S x A,
t=0

where the probability for 7 = (so, ao, ro, 1,01, r1,S2,0z2,r2,S3, -+ -) is given by

oo
P00 (7) = P(s1|S0, ao) H (at|st)P(St+1]St, at).

State Value and Action Value

» State and action values can be used to quantify goodness/badness of
policies and actions.

» The relation between the state value and the action value is given by
W(S) = Eanr(s) [Qﬂ (57 Cl)])
Q"(s,0a) = Eg wpjs,a) [1(S,a,8") +4V7(s))] .
» Computing the expectation seems not easy. However, the MDP structure

enables us to compute the values by finding the solutions to linear systems
(i.e., Bellman equations).

Bellman Equation for State Value

Theorem
Given policy =, state value satisfies the following Bellman equation:

V™ (S) = Eamn(-15)Es'mp(.[s,0) [1(S,a,8") + V7 (s))] .
Alternatively, if for any V € R!!, define the Bellman operator:
[T™VI(S) = Eamn(1s)Es mp(is,a) [F(S,0,8") + V()] ,
Bellman equation can be rewritten as
Vi =T"V".
That is, V™ is a fixed point of 7™, and can be computed via fixed point iteration.

» 7" looks one step ahead using policy 7.

Matrix Form for Bellman Operator

Lemma
The Bellman operator can be expressed as the following matrix form:

TV=r" +~PV,
where

r'(s1) [
A B P I

r"(sn) Pspsi -+ Psysy

and the entries of r. and P™ are

r"(s) = Eawn(s)Esnp(jsa) [1(5,0,8)] and pi = n(als)P(s'|s,a).

a

» pl, is the transition probability from s to s’ under policy 7.

Illustrative Example

Consider policy w(a|s) = 0.5 foralls, a
and lety =0.9:

0.3 0.35 0.35
PT=10 1 0 |,
0.15 0.35 0.5

rm =1[-0.25,0,0.2]",
V" =1[-0.21,0,0.31]".

We can also verify the correctness of V™. Taking the state so as an example, it is

not hard to show that

V™(s3) = > m(alss) Y p(s'Iss, a) (r(s3,,5') +V7(s)))

=0.5(—1.6+ 0.9 x 0.6 x 0.31) + 0.5 (2 + 0.9(0.4 x 0.31 — 0.3 x 0.21))

=0.31.

Bellman Equation for Action Value

Theorem
Given policy =, action value satisfies the following Bellman equation:

Q"(5,0) = Esrwp() [1(5,0,5") + 1 Earmnis) [Q7(S',0)]] -
Alternatively, if for any Q € R!S1*|4l define the Bellman operator:
[FTQl(s,a) = Esiwpjsa [1(5,0,5") + 7Earmnisy [Q(S')]
Bellman equation can be rewritten as
Q" = F Q"
That is, Q™ is a fixed point of F~.

» F7 also admits a matrix form and it is also a contraction with infinity norm.

Goal of RL

o a,_ a4 s L
1 i | i 1 i | [1 1
So <€ S S S, —+
1 \ 2 \ 3 \ 4 \
rll rl rZ 3 4
Trajectory: 7 = (S0, 00,00, ,St, A, Ft, -+)

Recall definitions of state value at s and action value at (s, a):

v (S) =E [thr(stvatvstﬁLl)'sO = Svﬂ_:|)

t=0
Q"(s,a) :=E [Z Y're|so = s,a0 = a] .
t=0

Goal of RL is to a find a policy that maximizes weighted state values:

max V™ (u), where V™ (u) := Esp [V (5)].

™

Basic RL Methods

» Valued-based methods: Not directly optimize policy but seek optimal state or
action values based on fixed point iteration or dynamic programming:

. MC Learning
Value Iteration sampling function .
)) —— { SARSA —— > Deep Q-Learning
Policy Iteration approximation

Q-Learning

Basic RL Methods

» Policy optimization: Directly optimize policy via parameterization my(-|s):

VWB(TNP |:Z’Y 5[7at75t+1):|)

where P? (1) = p(So) [T2, 7o (Qt|St)p(Se+1]St, ar). Then maximize V™ (u) is
finite dimensional optimization problem about 6. Value exists in expression
of policy gradient and policy optimization+value update= Actor-Critic.

Course: Algorithmic and Theoretical Foundations of RL (https://makwei.github.io/rlindex.html), also
includes materials about online planning.

Value-Based Methods

Optimal State and Action Values

V*(s):=supV" (s), Q"(s,a):=supQ”(s,qa).
» The optimal state and action values satisfy (Bellman optimality equations)
Q"(s,a) = Eg wp(.js,a) [r(5,a,58") + V" ()] and V*(s) = max Q'(s,q).
» Given optimal values, an optimal policy can be retrieved as

1 ifa=argmaxEs.p(.[sa) [I(S,a,5") + V" (s)],
* a
' (als) = Q*(s,a)
0 otherwise.

Value-based methods learn optimal values, then retrieval optimal policies.

Bellman Optimality Equation for Optimal State Value

Theorem
The optimal state value satisfies the following Bellman optimality equation:

Vi(s) = max Es/-.p(.[s,a) [r(s,a,s") + V" (s)].
Alternatively, if for any V € RS, define the Bellman optimality operator:
[TVI(s) = maxEyp(js.0) [1(5,0,5) + 7V (5)]
Bellman optimality equation can be rewritten as
V' =TV
That is, V* is a fixed point of T.

» 7 is a contraction with infinity norm.

Bellman Optimality Equation for Optimal Action Value

Theorem
The optimal action value satisfies the following Bellman optimality equation:

Q*(s,a) = Es/up(.js.0) {r(s,a,s’) +7max Q*(s’,a’)} .

Alternatively, if for any Q € RIS/l define the Bellman optimality operator:
[FQ](s,a) = Es/p(.|s,a) [r(s, a,s’) + Y max Q(s’, a’)} ,
Bellman optimality equation can be rewritten as
Q" = FQ".
That is, Q* is a fixed point of F.

» F is a contraction with infinity norm. This is the foundation of Q-learning.

An Overall Framework

evaluation .
7_rnew 2 T V ~ V
model-based evaluation
greedy strategy
MC evaluation
e-greedy strategy 7 i ‘/
TD evaluation
policy gradient
value function approximation
improvement

Overall, different RL algorithms can be viewed as implementing the idea of
alternative update of value and policy in different ways. We first present the
idea in the model based setting.

Value Iteration

Value Iteration (VI): Solve Bellman optimality equation by fixed point iteration,
VETL(s) = max Es/ wp(.|s,0) [r(s, a,s’) +yV* (s’)])

» To retrieve a policy after value iteration:

1 arg;naxIEs/Np(.“,a) [r(s, a,s’) + V¥ (S’)] ,

s (als) = .
0 otherwise.

Illustrative Example

» three states: S = {so, 51,52}

C s, c_z.R s, 4 s, :) » two actions: A = {ao,a:}
r=0 = r=0 ~ Each edge is associated with a

deterministic transition and a reward.
Suppose we start from V° = 0. Then
V¥ (s0) = r(S0,00,50) + V" (S0) =WV (50) = 4"V (s0) =0,
V¥ (52) = r (52, 00,52) + WA (52) = 1+ V" (s2) = 11%”; £V () = T2
Ve (s1) = max{r(sl,ao,sz) + V1 (s5),r (s1,0a1,50) + V! (so)}

_ L _ kR—1
7max{1_7(1 vy)7R}~
Thus (assuming R < 1),

v* (So) = 0, v* (51) = —, v* (Sg) = —.

Asynchronous Value Iteration

State values in VI are updated synchronously. An alternative is asynchronous
value iteration: Rather than sweeping through all states to create a new value
vector, only updates one state (an entry of vector) at a time.

Gauss-Seidel Value Iteration:

fors=1,2,3,...
V(s) ¢ maxEg p(is.0) [F (5,0.5") + 7V (s)]

Policy Iteration

E | E [E
Mo — VO — 1 — V' — iy — - — T

There are two ingredients in Policy Iteration (PI).

Policy Evaluation:
VT = Tk 4 PRV,

Policy Improvement:

1 a=argmaxEs . p.sa) [F(S,0,5) + V™ ()],
a

Tt (als) = Q™k(s,a)
0 otherwise.

Illustrative Example

Consider the example in following figure, where each state is associated with
three possible actions: a, ao, ar (move leftwards, stay unchanged, and move
rightwards). The reward is rs; = -1and rs, = 1. The discount rate is v = 0.9.

¢ e

(a) (b)

Assume the initial policy 7o is given in (a). This policy satisfies 7o (ao|s1) = 1 and
mo(ay|s2) = 1. This policy is not good because it does not move toward s,. We
next apply policy iteration problem.

Illustrative Example

» Policy Evaluation

VIO (s) = 1V (s [Ve(s) = -10
Vo (52) = -1+ ’YVWO (51)

» Policy Improvement

Q™(s,a) as ap ar
Sy — —10 | —8
So —10 —8 —

Since 7; choose the action that maximize Q™ (s, a), one has (see (b)):
T (Gr‘Sl) = 1, T (Clo|$2) =1.

It is evident that this is an optimal policy.

Monte Carlo (MC) Learning

evaluation

ﬂ_IlSVV z T V ~ V7T
model-based evaluation
greedy strategy

MC evaluation

e-greedy strategy 7-(- V

TD evaluation
policy gradient
value function approximation

improvement

Policy Iteration: greedy policy is improved via

Tt (S) = argmax Eg wp(.js,0)[1(S, @, 8") + V™ (s)],
a

Q"k (s,a)
where Q™(s, a) is evaluated via Bellman equation based on the model.

— What if system information (P and r) is not available?
— Replace model by data (model free).
— How to collect data? How to use data?

MC Policy Evaluation

Basic idea. Given 7, estimate V™ (s) and Q" (s, a) from sampled trajectories
Ti = {(567067’.{)751'1701'1’ th e)}In:l ~ .
» MC evaluation of V™ (s): s) =s,
1 n o0 i
VT (s) ~ - > (Zytr’[> :
i=1 t=0
» MC evaluation of Q" (s, a): s} = s, aj, = q,

E 1 : - i
Q (S,a)%nz< ’Ytrt>.
t=0

i=1

Use Trajectory More Efficiently

Trajectory (So, Qo, ro,S1,01, 61, -+) ~ m starting from s contains sub-trajectories
(St, Qt, It, St+1, Aty1, 11, - - -) that starts from other states (e.g. s; = s’). Thus,
return from the sub-trajectory

i 7

2 : t—t
Gt = ")/ rt/

t/'=t

can be used to build an estimator of V™ (s’). Namely, one trajectory can be used
to estimate different V™ (s).

There is no essential difference in the MC evaluations of state value and action value in methodology.

First-Visit and Every Visit

A A & s L
i i i i i
‘_t‘. s, _'YSFSJY s, _iYstJY
ry r 2 ry 4
First Visit

» Only sub-trajectory that starts from the first visit of s is used in the estimation
of V" (s); One trajectory is only used once in the evaluation of V™ (s).

o e a, 4 s
g I g i i g
‘—'Y s, —'Y‘—'Y s, _‘Y‘JY
ry r r, 3 4
Every Visit

» All sub-trajectories that start from of s is used in the estimation of V" (s); One
trajectory might be used many times in the evaluation of V" (s).

Incremental Update

Given a new single estimation G of state value or action value,

» state value update:

N(st) « N(si) +1, V(st) « V(st) +

1
i (6~ Vs

» action value update:

N(St, at) — N(S):7 at) =+ 1, Q(St, Gt) < Q(St, at) + (G — Q(St, at)).

N(St, Gt)

MC Learning with «-Greedy Policy

Algorithm 1: MC Learning with e-Greedy Exploration

Initialization: N(s,a) = 0,Q(s,a) = 0, Vs, a, o
fork=0,1,2,... do
Initialize so and sample an episode following m:

(S0,@0,r0,S1,Q1,F1, -+ ,ST—1,87—1,T—1,5T) ~ T
G+ 0
fort=T-1,T-2,...,0do
G+ ’YG-‘rI’t
if (st, a;) does not appear in (so, ao,S1,01,...,St—1,0:—1) then

N(St7 at) < N(St7 at) +1
Q(st, at) + Q(st, ar) + W(G —Q(st,ar))
Update policy of visited state via e,-greedy:

l1— e+ % ifa=argmaxQ(s:,a’)
mey1(0lst) = o

k7S i
A otherwise

end
end
end

Temporal-Difference (TD) Learning

. evaluation .
7rn(,w Z T V ~ V

model-based evaluation

greedy strategy
MC evaluation

e-greedy strategy ; i ‘/

TD evaluation

policy gradient
value function approximation

improvement

» Model-based evaluation: Solve Bellman equation accurately based on model;
» MC evaluation: Value estimation via sample mean;

» TD evaluation: Solve Bellman equation in a stochastic and online manner.

TD Policy Evaluation of Action Values

Recall that the Bellman equation for Q-values is

Qﬂ (Sa a) = []:WQW](Sv a) =]ES’NP(-|SA,G) [r(sa 075,) + nya,Nﬂ'("S/) I:Qﬂ— (5/7 a/)]]
= Es’~P(~|S,u)Ea/~7r(«\s’) [l"(S7 G,SI) + ’YQW(S/, a/)] s (S, a) €S x A

The Bellman iteration for computing Q-values is given by
Q" (5,0) = Egp s Barmr(is) [1(5,0,8) 06",)
=Q'(s,a) + at(s, a) (ES/NP(AB,@IEG/W(.B/) [r(s, a,s’) +~Q'(s, a’)] —Q'(s, a)))

Given a random sample (s,a,r,s’,a’), the RM algorithm is

Q""'(s,a) = Q'(s,a) + ax(s, a) (r(s, a,s') ++Q'(s’,a’) — Q'(s, a)) .

TD evaluation of actions values implements this in an online manner.

SARSA: On Policy TD Learning

Algorithm 2: SARSA

Initialization: Q°(s, a) = 0, So, 7o, Ao ~ mo(-|S0)

for t=0,1,2,... do

Sample a tuple (s, ay, rt, St+1, Q1) ~ 7 from (s, ar)

Q! (st,a¢) = Q' (St,at) + at (St, ar) (”t + ’YQt (St+1,0t41) — o} (st, Gt))
Update policy of visited state via ¢;-greedy:

€t

. t+1
1*€t+‘€7t‘ |fa:argrlnax0+ (st,a’),
mer1(alst) =]
e otherwise.

end

» SARSA is the abbreviation of “state-action-reward-state-action”, and it is an
on policy algorithm which updates the policy after every time step.

Q-Learning: Off-Policy TD-Learning

Recall that the optimal state-action values Q* is the fixed point of the Bellman
optimality operator F where

[FQ] (s,a) = Egwp(.js,a) |F(S,a,8") +7- max Q(s,a)|, (s,a)eSxA
a/

It can be shown that F is a contraction with factor 4. Assuming the model
(probability transition model) is known we can find Q* via Q-value iteration:

QH—I(Sva) = [}—Qt} (S,G)
= Q'(s,a) + at(s,a)([FQ(s,a) — Q'(s,a)), (s,a) €S x A.

Q-learning is a model free and online implementation of Q-value iteration:
Sample a tuple (s, a,r,s’) via a behavior policy, noting that

t !
r . s',a
v e
is an unbiased estimator of FQ' (s, a), we can update action-value at (s, a) by

Q"' (s,a) = Q' (s,a) + at (s, q) (r+ 7 - max Q' (s',a’) — Q' (s, a)) .
a'e

Q-Learning: Off-Policy TD-Learning

Algorithm 3: Q-Learning

Initialization: Q°(s,a) = 0, so

fort=0,1,2,... do
Sample a tuple (st, at, I't, St+1) ~ bt from s, where b; is a behavior policy
Update Q-value at visited state-action pair (s, a):

Q! (st,ar) = Q' (St, Qt)+ax (St, at) (f’t + - g{lgjz Q' (St+17 0,) -Q (t, Gt))

end

Value Function Approximation (VFA)

) evaluation .
v > VaV

model-based evaluation

greedy strategy
MC evaluation

e-greedy strategy 7 i ‘/

TD evaluation

policy gradient
value function approximation

improvement

Approximately represent state/action values with functions
V' (s) = V(s;w) or Q7(s,a) = Q(s,a;w)

» Learn parameter w instead of state/action value directly

» Generalize from seen states/actions to unseen states/actions

Policy Evaluation of Actions Values with VFA

With an oracle for Q" (s, a), we can form the following optimization problem
minJ(w) = E(s.a~p [[Q(S, ;0) — Q" (s, a)ll3] -
The SGD for this problem is given by
weyr = we +ar- (Q7(s,a) — Q(S, a;wt))V Q(S, a5 wr).

Sample a tuple (s,a,r,s’,a’). We can estimate Q™ (s, a) by r +~ - Q(s’, a’; wt),
yielding the update

Wep1 = we +ar - (F4+y-Q(s',ad’;w) — Q(S, a;wi))VwQ(S, ; we).

Linear VFA of Action Values

In linear VFA for action values, we have

Q(s,a;w) = ¢(s,a)’w, wherew € R" and

Itis clear that V., Q(s, a;w) = ¢(s, a).

SARSA with Linear VFA

Algorithm 4: SARSA with Linear VFA

Initialization: ¢s 4, So, 70, Ao ~ o (So)
for t=0,1,2,...do
Sample a tuple (st, G, It, St+1, Q1) ~ 7 from (s, ar)

W1 = Wt + ot (ft + v P(St41, Clt+1)th — o(st, Gt)th> (St ar)
Update policy of visited state via e:-greedy:

1—e+ Ith\ ifa=arg max o(st,a) wey 1,
me+1(a|St) = a

et ;
A otherwise.

end

Q-Learning with Linear VFA

In Q-learning Q(s, a;w) is used to approximate Q*(s, a). Having a transition
(St, @, rt, St+1) ~ by, we can construct r; + v - max Q (St+1, a;wt) as a better
a

estimation of Q*(s¢, a;) than Q(s, at; wt) since one-step lookahead reward r; is
accurate (or approximate error is discounted by v), and update w via

Wt+1 = wt + at (l’t + - maaX Q (St+1,a;wr) — Q(St, Ar; wt)) V., Q(st, at; wt)

2
to reduce £ (w) = % (rt + - max Q (St41,aQ;wt) — Q(st,at;w)> .

Algorithm 5: Q-Learning with linear VFA

Initialization: ¢(s, a), so

for t=0,1,2,...do
Sample a tuple (st, at, It, St+1) ~ bt from s; where by is a behavior policy
Update parameter

W1 = Wt + ot (l’t + - max d(Sty1, O)th — ¢(st, Gt)TWt> ¢(st, ar)

end

Q-Learning with VFA as Approximate Q-Value Iteration

Recall that the Q-value iteration has the following form:

Q""" = FQ', where [FQ](s,a) = Es/ op(.|s,a) [r (s,a,s") +- max Q(s, a/)] .

With Q" being replaced by Q(:;wt), there may not be a function Q(:; we+1) such
that Q(;; wi+1) = FQ(:;wt) holds exactly. We can solve for Q(:; wit1) via

wi+1 = argmin Es g)up [(Q(s,a;w) — [FQ] (Sva;wt))Q]

= arg min E(S,a)~D,S’~P(~|S,u) |:(Q(S, a; w) — (r(S, a, SI) + - gleav): Q(S/7 a/; wt)))2:| .

Solving it via one step SGD yields Q-learning with VFA.

Batch Method

Let D = {(s;, a;, r,-,s,f)}}“:1 be a batch of experience data. At time t, we can form
an sample version of E¢s o)p [(Q(S, a;w) — FQ(s, a;wt))?] and update w by
finding a solution to the empirical risk minimization (or regression) problem

n
Wip1 = argminz (Q(si,a;w) — (ri+- max Q(sfa'sw))”.

@ i=1

Solving this problem by batch SGD yields an instance of Fitted Q-Iteration.

Fitted Q-Iteration (FQI): Offline Approximate Q-Value Iteration

Algorithm 6: FQI
Initialization: Dataset D = {(s;, a;, 1, s/)}._,, initial VFA parameter w

for t =0, 1,2, ... until some stopping criterion is met do
Copy parameter: & < w

for k =0, 1,2, ... until some stopping criterion is met do
Sample a mini-batch B of D

Z(5- a;,ri,s))eB (I’,' Y- Ina::Q(S,f, CI,; ‘L') Q (Sh aj; w)) V.,Q (Siv aj; w)
(R EMV R a/

end
end

Deep Q-Learning

Deep Q-learning is a variant of FQI which uses deep neural network for VFA and
adopts incremental learning by maintaining a buffer and experience replay.

Algorithm 7: DQN
Initialization: Replay buffer D to capacity N, Q network Q(s, a; w) with w,
target Q network q(s, a; ©) with @ = w, SGD iteration number C, k = 0, and so
for t =0,1,2,... until some stopping criterion do
R+—k+1
Sample a tuple (st, at, rt, St+1) ~ bt from s; and add it to buffer D
sample a mini-batch B of D
W wta Z(s;,a;,r,u,s‘.’)es (rit+- %@X Q(s;,a’;) — Q(s;, a;;w)) Vo Q (Si, 055 w)
if k == Cthen
w — w
R+ 0
end
end

Policy Optimization

Value-Based RL vs Policy-Based RL

evaluation

T > VaVT"
model-based evaluation
greedy strategy

MC evaluation
e-greedy strategy 7 l ‘ /

TD evaluation
policy gradient
value function approximation

improvement

» Value-based RL: Learn optimal values and policy is implicitly inferred;
» Policy-based RL: Parametrize policy and conduct search in policy space.

Policy-Based RL

Consider a policy parameterization (which is essentially about how to represent
a distribution) such that :

mo(-|s) defines a probability distribution on A.

Note that once 4 is given, policy is determined.

Goal: Search for best ¢ subject to certain performance measure.
Typical advantages of policy-based methods include:

» Better convergence properties

» Effective in high dimensional or continuous action spaces
» Can learn stochastic policies

Policy Optimization

Consider average state value with initial distribution x as performance measure:
V(1) = Bsgrpu V7 (S0)] = B _pro [F(T)],

where given 7 = (S, at,)20,
oo oo
PiY () = (o) [[mo(arlst)P(seralse,ar) and r(r) = A're.
t=0 t=0
It is natural to formulate RL as

0" = argmax V"™ (u).
0

For simplicity, we only discuss the case where sate and action spaces are discrete.

Performance Difference Lemma

Given a policy 7, the advantage function is defined as

A" (s,a) =Q" (s,a) — V" (s),
which measures how well a single action is compared with average state value.
Lemma (Performance Difference Lemma)

For any two policies w1, w2, one has

1 -
Vi (p) = V™2 (n) = T Bona? [Ea~r (15 [A7 (s, 0)]] -

Policy Gradient Theorem

Theorem (Policy Gradient Theorem)

Recalling the definition of visitation measure, we have

VoV (n) = Empze Z 7'Q™ (st, at) Vg log ma (at|st)
t=0

1 w
= EESN"ZG Eqrg(1s) [Q™ (S, a) Vo log me(als)] .

» Policy gradient theorem expresses policy gradient as a weighted average of
Vo logm(als) over all state-action pairs. Note that Vy log mg(als) is direction
that mp(als) increases (i.e., probability of selecting a at s increases).

Policy Gradient in Terms of Advantage Function

Theorem (Policy Gradient in Terms of Advantage Function)

We have
. 1

VoV (p) = ﬁEswﬁsanB(-Is) [A™(s,a)Vg log me(als)] ,

provided > mwo(als) = 1 for any 6.
a

Proof. The result follows from the fact

Eavrs(19) [Valogma(als)] = Vo (D mo(als)) = 0.
a

Policy Gradient Ascent

0+ 60+a-Esq[Q"(s,a)Vglogme(als)]
Q™ (s, a)

o(als) Vomg(als)

= 9 —+ o -]ES,O
» Large Q™ (s,a) means that weight in front of the direction Vymy(als) is large.
Thus, the method attempts to exploit actions with large action values.

» Small mg(als) means that weight in front of the direction Vymy(als) is large.
This reflects that the method attempts to explore actions with low probability.

» Policy gradient method also fits into the framework of policy evaluation and
policy improvement, where policy evaluation affects direction to improve the
policy and policy improvement is achieved by updating policy parameter.
Thus, analysis of policy gradient methods often boils down to analysis of
improvement ability in policy domain.

Example: Softmax Parameterization

Lemma
The policy gradient under softmax parameterization is given by

Vo () = Py [s)70 5.,

» Softmax PG: in the parameter space,

d;é(s x
Ofq = 0sa + 77#(,}/)71'9(0|S)AT0(S, a).

In the policy space,

di(s
Tag O Ts,q €XP (771%(,3”6(0‘5)'4:9 (s, a)).

Trust Region Policy Optimization (TRPO)

Overall Idea

Given a policy m,, by performance difference lemma, we can rewrite V™ () as

1 ™
Ve (u) BN VAL (/‘l’) + fy]ESNdZIU EaNﬂ—g(.b) [A 0t (S, a)] .

1—
Since we do not have access to d;,, instead maximize the approximation:

1 ™
E__ o Eanmy(ls) [AT(S, 0)].

max Ve(6) = V™o (u) + m s~d,,

Trust Region Policy Optimization (TRPO)

Two Facts

» Assume > mo(als) = 1 forany 6. It is easy to see that V™ () and V;(#) match
at 6; up to first derivative.

» It can be shown that
2ve
V) 2 V(0) = 72y max KL ([9)]ma (19)),
where e; = maxsq |AT% (S,)|.

See “Trust region policy optimization” by Schulman et al. 2017 for derivation of second fact.

Trust Region Policy Optimization (TRPO)

The second fact suggests that we may seek a new estimator by maximizing V:(6)
in a small neighborhood of 6::

max Vi(6) subjectto maxKL(mg,(-|s)||ma(:]5)) < 6.
S
Moreover, replace constraint by the average version and instead solve

max Vi(6) subject to E__ 7o [KL(mo, (:[S)[|mo(:|5))] < 0.
n

Trust Region Policy Optimization (TRPO)

After linear approximation to V;(0) and quadratic approximation to KL at 6,
Ve(0) & (VoV™ (1))(0 = 00), B moc [KL(mo,([5)mo(-|5))] ~ %(9 — 00)TF(6:)(6 — 6r),
we arrive at the same problem as that for NPG,

max (Vo™ (1))"(6 ~ 6) subject to %(9 — 0)TF(0:)(0 — 00) < 6.

» TRPO is overall natural policy gradient (NPG) with adaptive line search.

Proximal Policy Optimization (PPO)

Recall from last section that

vt(e) X Es~d:9t Earwrrg(-\s) [Am)[(S, G)}

T (als)
7T9r(a|s)

= Eswd:et Earrg, (-1s)

AT (s,a)|,
serves as a surrogate function of true target in small region around 6.

PPO keeps new policy close to old one through clipped objective.

PPO with Clipped Objective

Let r(9) = =2 Then r(¢;) = 1. The clipped objective function is given by

7o, (als)"

Vi (0) = E, o Banry, 19 [min (r(0)A™(5,0).clip (r(0), 1 — e, 1+) A (5.a))|,

where
1+e r0)>1+c¢,
clip(r(0),1—e,14+¢)=4q r(0), rd) ell—el+¢,
1—¢ ri@)<l—e
» The min operation ensure vf“”(e) provides a lower bound. Since a maximal
point will be computed subsequently, min will not cancel the effect of clip.
» PPO policy update (in expectation): 6, = arg max, V' (6).

» In flat region, gradient of V""" (¢) is zero, thus won’t move far from 6, is using
policy gradient type method to solve the sub-problem.

See “Proximal policy optimization algorithms” by Schulman et al. 2017 for details.

MC Evaluation of Policy Gradient

The expectation in policy gradient expression requires MC evaluation.
» Sample N episodes:

T<i) = (S(()i)va(()i>vrg)i)7 T 75§’11va$l17r§"2175$)) ~ Y3

— /7 . .
» Use return G = >, _, 7" ~'rv as an unbiased estimate of Q™ (s, a;):

NOT-1
1 . . .
VoV (u) ~ Z Z 76"V log ms(a” |s).
t=0

i=1

=|

As illustration, we present policy gradient ascent with MC evaluation next.

REINFORCE

Algorithm 8: REINFORCE

Initialization: 7 (a|s) and 6.
fork=0,1,2,... do
Sample episodes D, = {r}:

N _ () L) (D) (i) (i) (i) (i)
0 = (S075@g",Fo s+ ,St2q, G721, 1721, ST

) ~ T,
Policy gradient calculation:

|Dg| T—1

) | .
9 = iy 2 276 Vologma, (@ Is(")

j=1 t=0

Policy parameter update:

Or+1 = Ok + argr

end

Actor-Critic Methods

» Value-based: Learn value function

Actor » Policy-based: Learn policy function

Value-Based L Policy-Based
Critic

» Actor-critic: Learn value and policy functions

Actor-Critic Methods

Motivation. MC policy gradient evaluation is sample inefficient and has high
variance. Similar to VFA in value-based RL, we can approximate values that
appears in policy gradient and update VFA parameters in learning process.
» Actor: Learn parameterized policy 7 via policy gradient;

» Critic: Learn value function V(:;w) or Q(:;w) in VV7 (1) via policy evaluation.
Recall TD evaluation for state value and action value parameter as follows:
(State value) & =re+ - V(Str1;w) — V(s w)
W w~+ ot 6t Vo V(St; w)

(Action value) & = rt 4+ v - Q(Sty1, Gr+1; w) — Q(St, At; W)

w4 w+ ot 5t VWQ(S(, Qt; w)

Action-Value Actor-Critic

Algorithm 9: Action-Value Actor-Critic

Initialization: policy parameters 6, action value function parameter wo.
fort=0,1,--- do

Sample a tuple (st, ai, rt, St+1,Ae+1) ~ 7o

Calculate ¢ < rt + v - Q(St+1, Ai+1;w) — Q(St, At; w)

Critic update: w + w + at 6 V., Q(St, Qt; w)

Actor update: 6 + 6 + 5: Q(St, ar; w) Vg log me (at|St)
end

There are other versions of actor-critic, for example, the parameters are only updated at the end of
an episode by using all the episode data simultaneously.

Advantage Actor-Critic Method (A2C)

In A2C, advantage function expression for policy gradient is used and value
function approximation is applied to state values:

Q(st, ar) = re +YV(Str1;w), A(St, Qr) = re + YV (Str1;w) — V(St; w)

ot

Algorithm 10: Advantage Actor-Critic (A2C)

Initialization: policy parameters 6,, state value function parameter wo.
fort=0,1,--- do

Sample a tuple (s¢, a¢, re, St4+1) ~ 7o

Calculate 6; < rt + YV(St41; w) — V(st;w)

Critic update: w + w + at 6t Vo, V(St;w)

Actor update: 6 < 0 + B: 6t Vo log g (at|St)
end

Entropy Regularization

Entropy Regularized State Value

Given a policy 7, the average entropy regularized state value is given by
1

V;—r(:u) = ﬁESng {Ea~w(z\s)Es’~P(-\s,a) [r(s,a, S,)} + TH(T"("S))}
1

= T FY]ESNdZ[EONw(»\S)Es/~P(-|s,a) [I’(S7 a75/) B Tlogﬂ(a|s)]

=E | 7' (r(st, a1, 5601 — Tlogm(ai|so))) | So ~ .| ,
t=0

where H(p) = >, palog pq is the entropy of a probability distribution.

» Entropy regularized state value at s, denoted V7 (s), can be similarly defined.

» In addition to the perspective based on entropy regularization for more
exploration, it can also be interpreted as encouraging exploration via revising
the reward (the third equation).

In this section, we will use T to denote the regularization parameter, which should be distinguished
from the trajectory.

Bellman Equation and Operator

Itis clear that V7 (1) satisfies the following Bellman equation

VI (S) = Eamn(.5)Es'mp(1s,a) [1(S,a,8") — Tlog(als) + V7 (s")] .
Define the Bellman operator as follows

TIV(S) = Eamn(1s)Es/wp(.1s,a) [F(S,0,5") — 7log(als) +~V(s)] .

It is easy to see that 7" is of v-contraction and VI is a fixed point of 7.".

Entropy Regularized Action Value

The entropy regularized action value is defined as
Q7 (s,a) = Egp(.js,a) [1(S,a,5") + V7 (s))] -

Note that we choose not to include —7logw(als) here. One immediately has
VI(S) = Eann(s) [Q7 (S, a) — Tlogm(als)] .

» Action value is state value where initial policy is deterministic, thus entropy 0.

» Itis convenient to give the maximum improvement policy (similar to PI
policy). That is, the solution to

mgxﬂV(S) = maxBar(.|s)Es/np(fs,a) [r(s,a,s") — T log(als) +~V(s")]
is w(+|s) < exp(Q"(s,-)/7), where Q'(s,a) = Eg ~p(.js,a) [I(S,@,5") +YV(s')].

Entropy regularization moves the maxima to the interior so that it has an
explicit solution in terms of softmax representation.

Performance Difference Lemma

Define the advantage function
AZ(s,a) = Q7 (s, a) — rlog(als) — VI(s).
It is evident that Eq.(.js) [A7(S,a)] = 0.

Lemma
One has

TIUVE(5) — VI2(5) = Eann(fs) [A7(5,)] — 7KL(m (-[5) 2 |5))-

Lemma (Performance Difference Lemma)
There holds

VI () =V () = =

D dii(s) (TFHVR2(s) — Vi2(9) -

s

Optimality

Define the Bellman optimality operator 7, as follows:
TV(S) = max Egn. 9 By s [1(5,0,5) — Tlog(a]s) + V()]
Then 7~ is monotone and ~-contraction with respect to || - ||co-

Theorem (Optimality)
Let V; be the solution to the Bellman optimality equation T-V(s) = T:V(s). Then

V;(s) = max V7 (S).

Moreover, there exists an optimal policy =* such that VT~ = V=.

Optimality

Proposition
Define Q; (s,a) = Es.wp(.js,a) [F(S, a,8") + Vi (s")] . It is evident that

Q;(s,a) = maxQj(s,a), Vs, a.
Moreover, one has ©*(-|s) « exp (Q;(S,-)/7) and
Vi(s) = Q;(s,a) — Tlogn"(als) & A (s,a) =0, Va.

» Recall that for the non-regularized case, one has A*(s,a) < 0, Va. Moreover,
A5 (s,a) =0, Va guarantees Eq...«(.|s) [A7(S,a)] = 0 even «*(-|s) > 0, Va.

Lemma (Sub-Optimality Lemma)
There holds

Vi) = V2 () = = D ()KL ([s)[7" (1s)).

Reverse Direction

Theorem
If
V(S) = ES’NP(»\S,O) [r(sy a, S/) + ’yv(sl)] -7 lOng'(a‘S), VS, a,

thenV =V: and = = «}.
Proof. Taking expectation with respect to = (-|s) on both sides yields V = V7.

Thus, Vis a value function. By Lemma 5 in Lecture 7, the condition also means

7(+|s) = argmax Eqz(.js)Es/ ~p(.js,a) [F(S,0,5") +V(s')] — Tlog 7(als),

#(-ls)
which implies T V(s) = V(s).
» This result essentially states that if A7 (s,a) = 0,V s, q, then = is the optimal

policy. It is parallel to the non-regularized case: if A"(s,a) <0,V s,qa, thenn
is an optimal policy.

Remark

» The optimal policy is unique with entropy regularization.
» Itisevident thatas r — 0, 77 (a|s) — 0 for a € argmax Q*(s, a).
» Since one has

max Q;(s,a) < Tlog (||exp = (5,) /1y) < tlog|A| + maaXQi(S,a),

it is easy to see that V;(s) — max, Q*(s,a) = V*(s) as T — 0.

Soft Policy Iteration

Soft Policy Iteration:

exp (Q:"(S,)/7')
[exp (Q7*(s,-)/7) I+~

» ~-rate convergence, with local quadratic convergence.

Ter1(+]$) = argmax T7VZF =
s

“Elementary Analysis of Policy Gradient Methods” by Jiacai Liu, Wenye Li, and Ke Wei, 2024.

Policy Gradient Theorem

Theorem (Policy Gradient Theorem)
Assume V0, > mg(als) = 1 for simplicity. One has

1 =
VO (1) = ——E__4m0 Eauny(.1s) [AT? (S, a) Ve logme(als)] .

1— v s~d,,

Example: Softmax Parameterization

Lemma
For softmax parameterization,
dil(s ”
VoV) = P (J5)AT 5.).

» Entropy softmax PG: in the parameter space,
d.’ (s .
Gsta = es,a + 7’]%(,}/)71'9(0|S)A7_9 (S7 G).
In the policy space,

(11‘2(57) mo(a|S)ATe (s, a)) .

+
Ts.q X Ts,a €XP (77

Questions?

	MDP and Basic Setup
	Value-Based Methods
	Value Iteration and Policy Iteration
	Monte Carlo Learning

	Policy Optimization
	Entropy Regularization

