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Lecture 9: Minimax Lower Bounds

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/05/19)

Motivation: Consider a set of probability distributions define on X and indexed by Θ, denoted P =
{Pθ, θ ∈ Θ}. For example, θ can denote certain parameter of a distribution or the corresponding
probability density function. Given a set of i.i.d data (X1, · · · , Xn) sampled from Pθ where θ is not
known a prior, a fundamental statistical problem is to estimate θ from D.

Let θ̂ : (X1, · · · , Xn) → Θ be an estimation procedure. The concentration inequalities and
other probability tools presented earlier can help establish an upper bound of the estimation error
in terms of1

Φ
(
ρ
(
θ̂, θ
))
,

where ρ(·, ·) is a (semi)metric defined on Θ and Φ : [0,∞) → [0,∞) is an increasing function. As
an example, for a univariate mean estimation problem, ρ(θ, θ′) = |θ − θ′| and Φ(t) = t2 yields the
squared error. On the other hand, it is worth investigating whether the estimation error of θ̂ is
optimal. To this end, we study the lower bound of the estimation error based on the minimax risk,
defined by

Mn(Θ) = inf
θ̂

sup
θ∈Θ

Eθ
[
Φ
(
ρ
(
θ̂, θ
))]

, (9.1)

where the subscript θ means that X1, · · · , Xn are sampled from Pθ. That is, for a fixed estimation
procedure we consider the worst case error by taking the supremum over all the distributions, and
then study the smallest worst case error achievable by any procedure.

There are two methods for obtaining the minimax lower bound: Bayesian analysis and reduction
to hypothesis testing. We will focus on the latter one since it is more versatile and can be applied
to most situations. To gain some intuition of the hypothesis testing method,consider the minimax
risk of estimating a scalar parameter in terms of the risk function |θ − θ′|. Suppose there are two
point θ1 and θ2 such that |θ1 − θ2| ≥ δ. If the probability of testing error is a constant no matter
what method we use to test which point the observed data comes from, then the estimation error for
any procedure should be greater than a multiple of δ since with constant probability we are likely to
mistaken one from the other. Of course we can also consider the problem of testing multiple points.
Thus, overall the problem is about how to choose the testing points such that they are as far away
as possible while the probability of testing error for any testing method remains a constant.

In this lecture we discuss two standard techniques for establishing the lower bounds of the min-
imax risks based on testing, including the Le Cam and Fano methods. Roughly speaking, Le Cam
method is based on binary testing and Fano methods are based on multiway hypothesis testing.
There is another method which is not covered in this lecture, known as Assouad method, for lower
bounding the minimax risk. Assouad method is based on the multiple binary hypothesis testing
when the risk function is separable, see for example Chapter 8 and 9 of [2].

Agenda:

1We use θ̂ to denote θ̂(X1, · · · , Xn) for simplicity.
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• Reduction to hypothesis testing

• Some divergence measures

• Le Cam method

• Fano methods

9.1 Reduction to Hypothesis Testing

Let {θ1, · · · , θm} be a 2δ-packing of the space Θ under the (semi)metric ρ, i.e., ρ(θi, θj) ≥ 2δ for
all i ≥ j. Define Pnj = Pθj × · · · × Pθj . First, by the Markov inequality we have

Eθj
[
Φ
(
ρ(θ̂, θj)

)]
≥ Φ(δ) · Pnj

[
Φ
(
ρ(θ̂, θj)

)
≥ Φ(δ)

]
≥ Φ(δ) · Pnj

[
ρ(θ̂, θj) ≥ δ

]
,

where we note that θ̂ = θ̂(X1, · · · , Xn), and Pnj indicates that (X1, · · · , Xn) are sampled from Pθj .
In addition, the second inequality is due to the fact that Φ is increasing. It follows that

sup
θ∈Θ

Eθ
[
Φ
(
ρ
(
θ̂, θ
))]
≥ max

θj
Eθj

[
Φ
(
ρ(θ̂, θj)

)]
≥ Φ(δ)

 1

m

m∑
j=1

Pnj
[
ρ(θ̂, θj) ≥ δ

] .

Next we will show 1
m

∑m
j=1 Pnj

[
ρ(θ̂, θ) ≥ δ

]
can be lower bounded by hypothesis testing error.

In the hypothesis testing, a test function is a map from a set of i.i.d data sampled from one
of {Pθj , j = 1, · · · ,m} to {1, · · · ,m}, which is used to infer from which probability distribution

the data comes from. Given an estimation procedure θ̂, we can define a test function naturally as
follows:

Ψ̂(X1, · · · , Xn) = arg min
`∈[m]

ρ(θ̂(X1, · · · , Xn), θ`),

where the tier is broken arbitrarily. Since {θ1, · · · , θm} is a 2δ-packing of Θ, it is clear that (see
Figure 9.1)

ρ(θ̂, θj) < δ ⇒ Ψ̂ = j.

Thus, when (X1, · · · , Xn) are sampled from Pθj , we have2

Pnj
[
Ψ̂ 6= j

]
≤ Pnj

[
ρ(θ̂, θj) ≥ δ

]
.

Consequently,

1

m

m∑
j=1

Pnj
[
ρ(θ̂, θj) ≥ δ

]
≥ 1

m

m∑
j=1

Pnj
[
Ψ̂ 6= j

]
.

2We also use Ψ̂ to denote Ψ̂(X1, · · · , Xn) for simplicity.

2



Moreover, we have

sup
θ∈Θ

Eθ
[
Φ
(
ρ
(
θ̂, θj

))]
≥ Φ(δ)

 1

m

m∑
j=1

Pnj
[
Ψ̂ 6= j

] .

Taking the infimum over all estimation procedures θ̂ on the lefthand side and the infimum over all
test functions yields the following proposition.

Proposition 9.1 Under the setup of the above test problem, the minimax risk (9.1) is lower
bounded as

Mn(Θ) ≥ Φ(δ) inf
Ψ

 1

m

m∑
j=1

Pnj [Ψ(X1, · · · , Xn) 6= j]

 , (9.2)

where the infimum ranges over all test functions. Note that δ is parameter that is free to choose
and it denotes the minimum distance between θi and θj for all i 6= j.

Figure 9.1: An illustration of 2δ-packing.

Consider a joint distribution (J, ZJ), where J is uniform distributed in {1, · · · ,m} and given
J = j, Zj = (X1, · · · , Xn) obeys the distribution of Pnj . It is clear that the joint distribution obeys

Q
[
ZJ ∈ ·, J = j

]
=

1

m
Pnj
[
Zj ∈ ·

]
,

and the marginal distributions are given by

QJ [J = j] =
1

m
and QZ

[
ZJ ∈ ·

]
=

1

m

m∑
j=1

Pnj
[
Zj ∈ ·

]
.

Moreover, for any test function Ψ, we have

Q
[
Ψ(ZJ) 6= J

]
=

m∑
j=1

Q
[
Ψ(ZJ) 6= J, J = j

]
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=

m∑
j=1

Q
[
Ψ(ZJ) 6= j, J = j

]
=

1

m

m∑
j=1

Pnj (Ψ(Zj) 6= j).

Therefore, we can rewrite (9.2) as

Mn(Θ) ≥ Φ(δ) inf
Ψ

Q
[
Ψ(ZJ) 6= J

]
, (9.3)

which will be used in the sequel for conciseness.

Remark 9.2 In words, reduction to hypothesis testing lower bounds the best achievable estimation
error by a multiple of the failing probability of test. It is not hard to imagine that the smallest
mis-test probability fundamentally relies on how close Pnj are, which enables us to provides a bound
independent of the test function. Moreover, the lower bound in (9.2) or (9.3) is a function of the
separation δ, which trades off between Φ(δ) (increases as δ increases) and the probability of test
error infΨ Q

[
Ψ(ZJ) 6= J

]
(relying on δ implicitly, decreases as δ increases). In order to obtain

a desirably large lower bound, one usually chooses the largest3 δ such that infΨ Q
[
Ψ(ZJ) 6= J

]
is greater than a constant4 (for example 1/2) and then uses the corresponding Φ(δ) to provide
lower bound. As we have explained in the motivation part, the intuition is that if the parameters
are far away (i.e, by choosing the largest possible δ) but it is still difficult to distinguish the related
distributions from the observations (i.e., probability of testing error is constant), then the estimation
error must be lower bounded by related function of the parameter distance since we can mistaken
one for the other. Next, we will present two concrete methods: the Le Cam and Fano methods.

9.2 Some Divergence Measures

We first take a detour and present some inequalities for divergence measures and their consequences
for product distributions. Let P and Q be two probability distributions defined on X . Assume they
have densities p(x) and q(x) respectively with respect to some underlying base measure µ. The
three related divergences are

• KL divergence: D(Q‖P) =
∫
X q(x) log q(x)

p(x)µ(dx),

• TV distance: ‖P−Q‖TV = supA⊂X |P(A)−Q(A)| = 1
2

∫
X |p(x)− q(x)|µ(dx),

• Hellinger distance: H2(P‖Q) =
∫
X

(√
p(x)−

√
q(x)

)2
µ(dx).

Recall that KL divergence and TV distance have also been mentioned in Lecture 3. The three
divergence measures are related as follows.

Lemma 9.3 For two distributions P and Q, we have

1. ‖P−Q‖TV ≤
√

1
2D(Q‖P),

3As can be seen δ may rely on other parameters, such as the number of samples.
4That is, choose the largest possible δ that the testing problem is still sufficiently challenging.
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2. ‖P−Q‖TV ≤ H(P‖Q)

√
1− H2(P‖Q)

4 .

Proof: The proof for the first inequality can be found in Lecture 3. The second inequality can
be proved by the Cauchy-Schwarz inequality (check this!).

Recall that Pn (respectively, Qn) is the product distribution on the product space X n (i.e., the
distribution of n i.i.d random variables). It is desirable to express the distance between Pn and Qn

in terms of P and Q. For TV distance, it is difficult to express ‖Pn−Qn‖TV in terms of ‖P−Q‖TV.
For KL divergence and the Hellinger distance we have the following lemma.

Lemma 9.4 For two distributions P and Q and the corresponding , we have

1. D(Qn‖Pn) = nD(Q‖P),

2. H2(Pn‖Qn) ≤ nH2(P‖Q).

Proof: The first inequality can be proved directly using the fact that the density functions for
Pn and Qn are p(x1) · · · p(xn) and q(x1) · · · q(xn) respectively. Additionally, it can be shown that
(check this!)

1

2
H2(Pn‖Qn) = 1−

(
1− 1

2
H2(P‖Q)

)n
.

Then the second inequality follows immediately since (1− x)n ≥ 1− nx for x ∈ [0, 1].

9.3 Le Cam Method

Le Cam method provides lower bounds on the minimax using the simple binary hypothesis testing.
This section explores this connection based on the total variation distance.

Lemma 9.5 In the case of binary hypothesis testing, we have

inf
Ψ

Q
[
Ψ(ZJ) 6= J

]
=

1

2
(1− ‖Pn1 − Pn2‖TV) ,

where Pn1 and Pn2 are product distributions corresponding to θ1 and θ2, respectively.

Proof: For any test function Ψ defined on X n, let

A = {(x1, · · · , xn) ∈ X n : Ψ(x1, · · · , xn) = 1}.

and Ac be the complementary on which Ψ = 2. Then we have

sup
Ψ

Q
[
Ψ(ZJ) = J

]
= sup

A

1

2
(Pn1 [A] + Pn2 [Ac])

=
1

2
+

1

2
sup
A

(Pn1 [A]− Pn2 [A])

=
1

2
+

1

2
‖Pn1 − Pn2‖TV.

Noting that supΨ Q
[
Ψ(ZJ) = J

]
= 1− infΨ Q

[
Ψ(ZJ) 6= J

]
, the claim follows immediately.

Combining the above lemma and Proposition 9.1 together yields the following minimax risk bound.
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Proposition 9.6 We have

Mn(Θ) ≥ Φ(δ)

2
(1− ‖Pn1 − Pn2‖TV)

for any pair of distributions θ1 and θ2 satisfying ρ(θ1, θ2) ≥ 2δ.

Note that as δ decreases ‖Pn1−Pn2‖TV decreases, and the binary hypothesis testing problem becomes
more challenging. In practice, we roughly attempt to choose the largest possible δ such that
‖Pn1 − Pn2‖TV is a small constant so that we can still mistaken the θ1 and θ2 (yielding the lower
bound of the estimation error depending on δ) .

Example 9.7 Let P = {Pθ : θ ∈ R} be a family of normal distributions N (θ, σ2) with fixed
variance σ2. We study the minimax risk of estimating θ from i.i.d samples {Xk}nk=1 drawn from
Pθ. We consider two parameters θ1 = 0 and θ2 = θ satisfying θ = 2δ. In order to apply the Le
Cam method, we need to bound ‖Pnθ − Pn0‖TV. Given two probability distributions P and Q defined
over X , respectively with their probability densities p(x) and q(x) under some base measure µ, it
can be easily shown that (check this!)

‖P−Q‖2TV ≤
1

4

(∫
X

p2(x)

q(x)
µ(dx)− 1

)
.

Using this result for Pn0 and Pnθ on X = Rn yields that

‖Pnθ − Pn0‖2TV ≤
1

4

(
exp

(
nθ2/σ2

)
− 1
)

=
1

4

(
exp

(
4nδ2/σ2

)
− 1
)
.

Taking δ = 1
2
σ√
n

yields that

inf
θ̂

sup
θ∈R

Eθ
[
|θ̂ − θ|2

]
≥ δ2

2

(
1−
√
e− 1/2

)
≥ δ2

6
=

1

24

σ2

n
.

The scale σ2/n is sharp, and the sample mean θ̂ = 1
n

∑n
k=1Xk satisfies this bound (check this!).

9.4 Fano Methods

The Fano methods provide lower bounds based on the multiway hypothesis testing and the Fano
inequality in information theory.

9.4.1 Information Theory Basics

Information theory is essentially about studying the information or randomness stored in probability
distributions. Here we provide some basic materials in information theory that is needed for lower
bounding the minimax risk. More details about information can be found in the book Elements of
Information Theory. The fundamental notion in information theory is Shannon entropy.
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Definition 9.8 (Shannon entropy) Let X ∼ Q where Q is a probability distribution on X with
density q(x) with respect to some base measure µ. The Shannon entropy of5 X is

H(X) = −
∫
X
q(x) log q(x)µ(dx). (9.4)

When X is a discrete random variable, we can take X as a finite set and take µ as a counting
measure on X . In this case, the definition (9.4) reduces to the discrete entropy6

H(X) = −
∑
x∈X

q(x) log q(x). (9.5)

To motivate the definition of entropy, consider the random variable/the distribution

X =


a with probability 1

2

b with probability 1
4

c with probability 1
8

d with probability 1
8 .

Let (X1, · · · , XN ) be i.i.d samples of X, e.g.,

a, a, b, c, a, d, a, b...

In the coding problem, we need to assign {a, b, c, d} with binary numbers such that the binary
number sequences corresponding to (X1, · · · , XN ) can be decoded to recover (X1, · · · , XN ). For
example, we can set

a = 00, b = 01, c = 10, d = 11.

Then for any 0-1 sequence, we can uniquely decode the symbols. For this coding scheme, the
total length of the codes is 2N ; that is on average 2 digits for each sample. A natural question
is whether there are other more efficient coding scheme that has a smaller length but can also
guarantee successful decoding. It is obvious that the above coding scheme does not consider the
frequency each symbol occurs. Intuitively, symbols with low frequency should be encoded with
short codes and vice versa. A more efficient coding scheme is presented in Figure 9.2, with the
total length of the codes for the sampled sequence is (in expectation) N ·H(X). Actually, it can
be shown that this is the best one can do.

Overall, the entropy H(X) measures on average how many bits are needed to represent a distri-
bution. Roughly speaking, to represent the probability for X = x (i.e., q(x)), we need log 1/(q(x))
bits since it corresponds to 1/q(x) possibilities. Thus, on average we need H(x) bits to store the
distribution of X. The entropy reflects the uncertainty (amount of information) of a distribution,
and distributions with high uncertainty have high entropy (large amount of information)7.

Lemma 9.9 For discrete entropy, we have 0 ≤ H(X) ≤ log |X |.
5Shannon entropy is actually a function of probability distributions since there are many different random variables

obeying the same distribution. That is, it is a quantity that summaries the information of a distribution. Despite
this, we just follow the standard practice in information theory and treat it as a function of random variables.

6Note that, for continuous random variables, the Shannon entropy is often referred to as the differential entropy.
7Amount of information = possibilities, quantified by codes length.
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Figure 9.2: A coding scheme.

It is worth noting that for differential entropy (i.e., entropy of continuous random variables),
H(X) ≥ 0 is not always true since q(x) can be greater than 1 (for example consider a uniform
distribution over a small interval). The upper bound log |X | is achieved by the uniform distribu-
tion on X , i.e., Q(X = x) = 1

|X | .

Proof: The lower bound H(X) ≥ 0 follows from q(x) ≤ 1 and the upper bound follows from
Jensen inequality.

We can also define the conditional entropy, which is the amount of information left in a random
variable after observing another.

Definition 9.10 (Conditional entropy) Given a pair of random variables(X,Y ) on (X ,Y) with
joint distribution QX,Y , the conditional entropy of X|Y is defined as

H(X|Y ) = EY
[
−
∫
X
q(x|Y ) log q(x|Y )µ(dx)

]
.

In addition, given two random variables, we can define the mutual information between them.

Definition 9.11 (Mutual information) Given a pair of random variables(X,Y ) on (X ,Y) with
joint distribution QX,Y , let QX and QY denote the respect marginal distributions. The mutual
information of X and Y is defined as

I(X,Y ) = D(QX,Y ‖QXQY ).

We first note that I(X,Y ) ≥ 0, and I(X,Y ) = 0 if and only if X and Y are independent. Thus,
it can be thought as a way to measure the amount of dependence between X and Y . When X and
Y are independent, I(X;Y ) = 0.

We have the following properties about entropy, conditional entropy and mutual information.

Lemma 9.12 We have

1. H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ),

2. H(X,Y |Z) = H(X|Z) +H(Y |X,Z) = H(Y |Z) +H(X|Y,Z),

3. I(X,Y ) = H(X) +H(Y )−H(X,Y )
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4. I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),

5. H(X|Y ) ≤ H(X), H(Y |X) ≤ H(Y ),

6. H(Y |X) = 0 if Y = f(X), i.e., when Y is a function of X.

Proof: Whenever it is possible, we will assume the existence of the (conditional) density functions
in the proofs for conciseness.

The first two identities are known as the chain rule for entropy. We only prove the first equality
in 1 and 2 since the other two can be proved similarly. Noting that q(y|x) = q(x,y)

q(x) , we have

H(Y |X) = −
∫
X

(∫
Y
q(y|x) log q(y|x)µ(dy)

)
q(x)µ(dx)

= −
∫
X

(∫
Y

q(x, y)

q(x)
log

q(x, y)

q(x)
µ(dy)

)
q(x)µ(dx)

= H(X,Y )−H(X).

Similarly, noting that q(y|x, z) = q(x,y,z)
q(x,z) = q(x,y|z)q(z)

q(x,z) = q(x,y|z)
q(x|z) and q(x, z) = q(x|z)q(z), we have

H(Y |X,Z) = −
∫
X

∫
Z

(∫
Y

q(x, y|z)
q(x|z)

log
q(x, y|z)
q(x|z)

µ(dy)

)
q(x|z)q(z)µ(dx)µ(dz)

= −
∫
X

∫
Z

(∫
Y
q(x, y|z) log q(x, y|z)µ(dy)

)
q(z)µ(dx)µ(dz)

+

∫
X

∫
Z

(∫
Y
q(x, y|z) log q(x|z)µ(dy)

)
q(z)µ(dx)µ(dz)

= −
∫
X

∫
Z

(∫
Y
q(x, y|z) log q(x, y|z)µ(dy)

)
q(z)µ(dx)µ(dz)

+

∫
Z

(∫
X

(∫
Y
q(x, y|z)µ(dy)

)
log q(x|z)µ(dx)

)
q(z)µ(dz)

= H(X,Y |Z)−H(X|Z).

Expanding the expression for I(X,Y ),

I(X,Y ) =

∫
Y

∫
X
q(x, y) log

q(x, y)

q(x)q(y)
µ(dx)µ(dy),

yields 3 straightforwardly.
Combining 1 and 2 together yields 4, and 5 follows from 4 directly. Note that 5 means the

conditional entropy is always less than or equal to the entropy. That is, considering the entropy
under certain condition only decreases the uncertainty of a random variable. Moreover, if X and
Y are independent, then H(X|Y ) = H(X), so in this situation observing Y will not reduce the
uncertainty in X.

When Y = f(X), Y |(X = x) is deterministic or it is a discrete random variable only taking one
value at f(x). Evidently, we have H(Y |X) = 0. This means there is no uncertainty in Y once X
is observed and hence H(Y |X) = 0.
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Now we are ready to present and prove the Fano inequality in information theory. Let X be
random variable on a finite set X . Assume we observe a different random variable Y , and want to
estimate Q [Ψ(Y ) 6= X], where Q is the joint distribution of X and Y , and Ψ(·) is a test function.

Lemma 9.13 (Fano inequality) We have

Q [Ψ(Y ) 6= X] ≥ H(X|Y )− log 2

log |X |
. (9.6)

Proof: Let E be the random variable such that E = 1 if Ψ(Y ) 6= X and E = 0 otherwise. The
proof follows by expanding H(X,E|Y ) in two different ways given in 2 of Lemma 9.12.

Letting h = −p log p− (1− p) log(1− p), we have

H(X,E|Y ) = H(E|Y ) +H(X|E, Y )

= H(E|Y )︸ ︷︷ ︸
≤H(E)

+Q [E = 1]H(X|E = 1, Y )︸ ︷︷ ︸
≤Q[E=1] log(|X |−1)

+Q [E = 0]H(X|E = 0, Y )︸ ︷︷ ︸
=0

≤ h (Q [Ψ(Y ) 6= X]) + Q [Ψ(Y ) 6= X] log(|X | − 1),

where we have used the fact that conditioned on E = 1, Y = y, X can only take |X | − 1 possible
values and conditioned on E = 0, Y = y, X = Ψ(y) is deterministic. On the other hand,

H(X,E|Y ) = H(X|Y ) +H(E|X,Y ) = H(X|Y ),

where H(E|X,Y ) = 0 due to 6 of Lemma 9.12. Combining the above two inequalities together and
further noting h(p) ≤ log 2 for all p ∈ [0, 1] concludes the proof.

9.4.2 Fano Lower Bound on Minimax Risk

Recall that the minimax risk can be lower bounded by Φ(δ) infΨ Q
[
Ψ(ZJ) 6= J

]
, where the random

variable ZJ is generated by first sampling J uniformly from [m] = {1, · · · ,m} and then generating
ZJ according to Pnj (here Pnj , j = 1, · · · ,m are the product distributions which corresponds to the

2δ-separated set {θj}mj=1), see Section 9.1 for details. Intuitively, Q
[
Ψ(ZJ) 6= J

]
should relate to

the dependence between ZJ and J . For example, if ZJ is independent of J , it would be impossible
to tell J from ZJ . Since I(ZJ , J) provides one way to characterize the dependence between ZJ and
J in terms of the KL divergence, it is reasonable to bound Q

[
Ψ(ZJ) 6= J

]
by I(ZJ , J) and then

provide a minimax lower bound based on it. Indeed, we have the following theorem.

Theorem 9.14 Under the setting for the construction of J and ZJ in Section 9.1, we have

Mn(Θ) ≥ Φ(δ)

(
1− I(ZJ , J) + log 2

logm

)
. (9.7)

Proof: It suffices to show that

Q
[
Ψ(ZJ) 6= J

]
≥ 1− I(ZJ , J) + log 2

logm
. (9.8)

To this end, letting X = J and Y = ZJ in (9.6) and further noting H(J |ZJ) = H(J)− I(ZJ , J) =
logm− I(ZJ , J) shows (9.8).

In order to apply Theorem 9.14, we need to further upper bound I(ZJ , J). The local Fano
method and global Fano method establish the lower minimax risk bound by upper bounding
I(ZJ , J) in different ways.
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9.4.3 Local Fano Method

The mutual information can be written in terms of the component distributions {Pnj }mj=1 and the

mixture distribution QZ = 1
m

∑m
j=1 Pnj as follows

I(ZJ , J) =
1

m

m∑
j=1

D(Pnj ‖QZ). (9.9)

Letting pnj (x1, · · · , xn) be the density of Pnj under some base measure µ(dx1 · · · dxn) and noting

that 1
m is the density of QJ under the counting measure µ(dj), the density of the joint distribution

Q under the base measure µ(dx1 · · · dxn) µ(dj) is given by 1
mp

n
j (x1, · · · , xn), and the density of QZ

is given by 1
m

∑m
j=1 p

n
j (x1, · · · , xn). Thus a simple calculation yields,

I(ZJ , J) =

∫
Xn×[m]

1

m
pnj (x1, · · · , xn) log

1
mp

n
j (x1, · · · , xn)(

1
m

∑m
i=1 p

n
i (x1, · · · , xn)

)
1
m

µ(dx1 · · · dxn)µ(dj)

=
1

m

m∑
j=1

∫
Xn

pnj (x1, · · · , xn) log
pnj (x1, · · · , xn)(

1
m

∑m
i=1 p

n
i (x1, · · · , xn)

)µ(dx1 · · · dxn)

=
1

m

m∑
j=1

D(Pnj ‖QZ),

which proves (9.9). Indeed, the above derivation can be interpreted using

I(ZJ , J) = H(ZJ)−H(ZJ |J).

In addition, we have

D(Pnj ‖QZ) = D(Pnj ‖
1

m

m∑
i=1

Pni )

=

∫
Xn

pnj (x1, · · · , xn) log
pnj (x1, · · · , xn)

1
m

∑m
i=1 p

n
i (x1, · · · , xn)

µ(dx1 · · · dxn)

= −
∫
Xn

pnj (x1, · · · , xn) log
1
m

∑m
i=1 p

n
i (x1, · · · , xn)

pnj (x1, · · · , xn)
µ(dx1 · · · dxn)

≤ 1

m

m∑
i=1

∫
Xn

pnj (x1, · · · , xn) log
pnj (x1, · · · , xn)

pni (x1, · · · , xn)
µ(dx1 · · · dxn)

=
1

m

m∑
i=1

D(Pnj ‖Pni ),

where the fourth line follows from the Jensen inequality. Inserting this inequality into (9.9) yields

I(ZJ , J) ≤ 1

m2

m∑
j,i=1

D(Pnj ‖Pni ). (9.10)

Therefore, we have the following proposition.

11



Proposition 9.15 Under the setting for the construction of J and ZJ in Section 9.1, we have

Mn(Θ) ≥ Φ(δ)

(
1−

1
m2

∑m
j,i=1D(Pnj ‖Pni ) + log 2

logm

)
. (9.11)

To apply the bound in (9.11), we need to construct a family of distributions {Pj}mj=1 corre-
sponding to {θj}mj=1 such that

• ρ(θj , θ`) ≥ 2δ, and m can be as large as possible,

• D(Pnj ‖Pni ) is sufficiently small.

Due to the second constraint, we cannot construct a packing of the entire space Θ; otherwise,
maxi,j D(Pnj ‖Pni ) would be large. Instead, the local Fano method construct a packing of local subset
by first construct a packing set of a fixed radius and then shrinking the packing sets by δ, which
leaves the packing number unchanged but gives us the room to choose a δ that is sufficiently small

such that D(Pnj ‖Pni ) can be sufficiently small and 1−
1

m2

∑m
j,i=1D(Pn

j ‖Pn
i )+log 2

logm is larger than a small
constant. Let illustrate this with two examples.

Example 9.16 We consider the mean estimation of multivariate normal distributions (in contrast
to Example 9.7) N (θ, σ2Id), where θ ∈ Rd. It is not hard to show that the mean squared error of

the sample mean estimator is of the order dσ2

n (check this!). In this example we will show that

the minimax risk of the means squared error is & dσ2

n
To this end, let {x1, · · · , xm} be a 1/2 packing of the unit `2-ball with logm ≥ d log 2. Define

θj = 4δxj. Then it is trivial that ‖θi − θj‖2 ≥ 2δ and ‖θi − θj‖2 ≤ 8δ. In addition, we have

D(Pnj ‖Pni ) = nD(Pj‖Pi) = nD(N (θj , σ
2Id)‖N (θi, σ

2Id)) =
n

2σ2
‖θj − θi‖22 ≤

32nδ2

σ2
.

It follows that

1
m2

∑m
j,i=1D(Pnj ‖Pni ) + log 2

logm
≤

32nδ2

σ2 + log 2

d log 2
.

1

2
,

if we choose δ2 � d
nσ

2. Thus, we conclude that

inf
θ̂

sup
θ∈Rd

E
[
‖θ̂ − θ‖22

]
&
dσ2

n
.

Example 9.17 Consider the model Y = Aθ∗ +w, where A ∈ Rn×d is fixed and rank(A) = d, and
w ∼ N (0, σ2In). We want to lower bound the minimax risk when estimating θ∗ from Y under the
(semi)metric

ρ(θ, θ′) =
‖A(θ − θ′)‖2√

n
.

Define the set S = {x ∈ range(A) : ‖x‖2 = 1}. We can construct a 1/2-packing of S with the
packing number m satisfying logm ≥ d log 2. Let {x1, · · · , xm} denote the packing set, the goal is

12



to construct a set {θ1, · · · , θm} such that ρ(θi, θj) ≥ 2δ. To this end, define θj to be the vector such
that Aθj = 4δ

√
nxj. Then, it is easy to verify that

ρ(θi, θj) =
‖A(θi − θj)‖2√

n
= 4δ‖xi − xj‖2,

and consequently, 2δ ≤ ρ(θi, θj) ≤ 8δ.
Note that the observations Y = (Y1, · · · , Yn) ∼ N (Aθ, σ2In). By the divergence property of

multivariable Gaussian distribution, we have

D(Pnj ‖Pni ) =
1

2σ2
‖A(θj − θi)‖22 ≤

32nδ2

σ2
.

It follows that

1
m2

∑m
j,i=1D(Pnj ‖Pni ) + log 2

logm
≤

32nδ2

σ2 + log 2

d log 2
.

1

2
,

if we choose δ2 � d
nσ

2. Thus, we conclude that

inf
θ̂

sup
θ∈Rd

E

[
‖A(θ̂ − θ)‖22

n

]
&
dσ2

n
.

This bound is sharp in order which can be achieved for example by the least-squares estimator
(check this!).

9.4.4 Global Fano Method

Recall from (9.9) that

I(ZJ , J) =
1

m

m∑
j=1

D(Pnj ‖QZ), QZ =
1

m

m∑
j=1

Pnj .

Thus, if we can construct a packing of Pn in terms of the KL divergence, it is likely to bound
I(ZJ , J) using the packing of the all the distributions. This leads to the global Fano method, also
known as Yang-Barron method.

Lemma 9.18 Let NKL be the ε-covering number of Pn under the square root KL divergence. Then
we have

I(ZJ , J) ≤ inf
ε>0

{
ε2 + logNKL

}
. (9.12)

Proof: We first claim that

1

m

m∑
j=1

D(Pnj ‖QZ) ≤ 1

m

m∑
j=1

D(Pnj ‖Q), for any Q.

That is, the average distribution minimizes the KL divergence. Indeed, we have

1

m

m∑
j=1

D(Pnj ‖QZ) =
1

m

m∑
j=1

EPn
j

[
log

dPnj
dQZ

]
=

1

m

m∑
j=1

EPn
j

[
log

(
dPnj
dQ

dQ
dQZ

)]
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=
1

m

m∑
j=1

EPn
j

[
log

dPnj
dQ

]
+

1

m

m∑
j=1

EPn
j

[
log

dQ
dQZ

]

=
1

m

m∑
j=1

EPn
j

[
log

dPnj
dQ

]
− EQZ

[
log

dQZ

dQ

]

≤ 1

m

m∑
j=1

EPn
j

[
log

dPnj
dQ

]
.

=
1

m

m∑
j=1

D(Pnj ‖Q).

Consequently,

I(ZJ , J) ≤ 1

m

m∑
j=1

D(Pnj |Q) ≤ max
j=1,··· ,m

D(Pnj |Q)

for any Q. Thus, it suffices to obtain a bound by a particular Q.
To this end, let {Q1, · · · ,QN} be a ε-net of Pn under the square-root KL distance and define

Q = 1
N

∑N
k=1 Qk. By construction, there exists a Qkj such that D(Pnj ‖Qkj ) ≤ ε2. Then,

D(Pnj ‖Q) = EPn
j

[
log

dPnj
dQ

]
= EPn

j

[
log

dPnj
1
N

∑N
k=1 dQk

]

≤ EPn
j

[
log

dPnj
1
N dQkj

]
≤ ε2 + logN.

Since this bound holds for any Pnj and any ε > 0, the claim follows.

Combing Lemma 9.18 with Theorem 9.14 yields the following proposition.

Proposition 9.19 Under the setting for the construction of J and ZJ in Section 9.1, we have

Mn(Θ) ≥ Φ(δ)

(
1−

(
ε2 + logNKL

)
+ log 2

logm

)
. (9.13)

Recall that m in (9.13) is the number of θj such that ρ(θi, θj) ≥ 2δ, so it relies on δ and when δ
is prescribed we may choose {θj}mj=1 to be global packing of Θ so that m is maximized. Note that
there are two parameters ε and δ to be determined in (9.13). A typical way to choose them is

• choose ε such that ε2 ≥ logNKL,

• choose largest possible δ such that logm ≥ 4ε2 + 2 log 2,

so that 1− (ε2+logNKL)+log 2

logm ≥ 1
2 .
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Example 9.20 Consider the family of density functions

F = {f : [0, 1]→ [c0, c1] : ‖f ′′‖∞ ≤ c2 and

∫ 1

0
f(x)dx = 1},

where 0 < c0 < 1 < c1, c2 > 1 are constants. We study the minimax risk of estimating a density
function from i.i.d data X1, · · · , Xn ∼ Pf under the Hellinger distance

ρ(f, g) = H(f‖g) := H(Pf‖Pg) =

√∫ 1

0

(√
f(x)−

√
g(x)

)2
dx.

Note that

D(Pf‖Pg) =

∫ 1

0
f(x) log

f(x)

g(x)
dx

≤
∫ 1

0
f(x)

(
f(x)

g(x)
− 1

)
dx

=

∫ 1

0

(f(x)− g(x))2

g(x)
dx

≤ 1

c0

∫ 1

0
(f(x)− g(x))2dx,

and

ρ(f, g)2 =

∫ 1

0

(√
f(x)−

√
g(x)

)2
dx

≤ 1

4c2
0

∫ 1

0

(√
f(x)−

√
g(x)

)2 (√
f(x) +

√
g(x)

)2
dx

=
1

4c2
0

∫ 1

0
(f(x)− g(x))2 dx.

Therefore, both the squared KL divergence and ρ(·, ·) can be bounded by the L2 distance. Conse-
quently, in order to apply the global Fano method, we only need to understand the metric entropy
in the L2-norm. Since f ∈ F is second order smooth with ‖f ′′‖∞ ≤ c2, it can be shown that (See
Example 5.11 of [1]),

logN(F , ‖ · ‖2, α) �
(

1

α

)1/2

.

Since D(Pnf‖Png ) = nD(Pf‖Pg),
√
D(Pnf‖Png ) ≤ ε if

√
D(Pf‖Pg) ≤ ε/

√
n. It follows that,

logNKL �
(√

n

ε

)1/2

Thus, in order for ε2 ≥ logNKL, we may choose ε2 � (n)
1
5 . Moreover, since logm �

(
1
δ

)1/2
, for

the above choice of ε, we may choose δ � n−
2
5 such that logm ≥ 4ε2 + 2 log 2. Finally, it can be

concluded that

inf
f̂

sup
f
H2(f̂‖f) & n−

4
5 .
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