
High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 8: Random Matrices and Applications

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/05/05)

Motivation: The study of random matrices is directly motivated by the estimation of covariance
matrices. Let X ∈ Rn be a mean zero random vector. Then the covariance matrix corresponding
to X is given by

Σ = E
[
XXT

]
.

However, since we typically do not know the distribution of X but only have access to m i.i.d
samples {Xk}mk=1 of X, a natural estimator1 of Σ is

Σm =
1

m

m∑
k=1

XkX
T
k .

Then we would like to know how close the random matrix Σm to its mean Σ, particularly in terms
of the matrix spectral norm.

The approaches for studying the concentration of random matrices relies on the knowledge of
the distribution of the elements. For example, if the random matrix has sub-Gaussian entries, we
can establish the concentration results based on the concentration of random variables through the
variational expression for the matrix spectral norm. When there is no explicit distributions associ-
ated with the elements of the random matrix, the matrix concentration bound can be developed by
imitating the Chernoff method for random variables. That is, either we can use the concentration
inequalities for the random variables directly, or we can extend the proof techniques for the random
variable case to the random matrix case.

Before proceeding, it is worth noting that we will study matrix concentration in terms the spec-
tral norm rather than the Frobenius norm. This is largely due to that the deviation of principle
directions associated with the covariance matrix is typically of interest, and the bound based on
spectral norm is sufficiently tighter than that based on the Frobenius norm (which is the sum of
the errors in all directions). In addition, it is trivial that the matrix concentration bound in terms
of Frobenius norm can be reduced to concentration result of random variables.

Agenda:

• Covariance matrix under sub-Gaussian assumption

• Application: Clustering based on PCA

• Matrix Bernstein inequality

• Application: Covariance matrix for general distributions

• Application: Sparse Recovery
1When the covariance matrix is known to have certain structure, a better estimator can be constructed based on

that structure, see for example Chapter 6.5 of [1].
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8.1 Covariance Matrix under sub-Gaussian Assumption

In this section we will consider the concentration of the covariance matrix Σm when X is a sub-
Gaussian random vector, defined as follows.

Definition 8.1 (Sub-Gaussian random vector) A mean zero random vector X ∈ Rn is sub-
Gaussian with parameter σ2 if for each v ∈ Sn−1 (i.e., ‖v‖2 = 1), 〈X, v〉 is a sub-Gaussian random
variable with parameter σ2.

Example 8.2 Assume X ∈ Rn has i.i.d σ2-sub-Gaussian entries. Then,

E
[
eλ〈X,v〉

]
= E

[
n∏
k=1

eλvkXk

]
≤

n∏
k=1

e
λ2v2kσ

2

2 = e
λ2σ2

2 for v ∈ Sn−1,

meaning 〈X, v〉 is σ2-sub-Gaussian. Thus, X is a σ2-sub-Gaussian random vector.

Example 8.3 Let X ∼ N (0,Σ). Then for any v ∈ Sn−1, vTX ∼ N (0, vTΣv). Since vTΣv ≤ ‖Σ‖2,
we can conclude that X is a sub-Gaussian random vector with parameter at most ‖Σ‖2.

The following lemma provides a characterization of the spectral norm of a symmetric matrix in
terms of the ε-net. We have indeed seen this result for general matrices in Lecture 4.

Lemma 8.4 Let Z ∈ Rn×n be a symmetric matrix. Assume ε ∈ [0, 1/2) and let N be a ε-net of
Sn−1 under the ‖ · ‖2 metric. Then

‖Z‖2 ≤
1

1− 2ε
sup
v∈N
|〈Zv, v〉| .

Proof: For any x ∈ Sn−1, by the definition of ε-net, there exists a vector π(x) ∈ N such that
‖x− π(x)‖2 ≤ ε. It follows that

〈Zx, x〉 − 〈Zπ(x), π(x)〉 = 〈Z(x− π(x)), x〉+ 〈Zπ(x), x− π(x)〉 ,

and hence

|〈Zx, x〉 − 〈Zπ(x), π(x)〉| ≤ 2ε‖Z‖2.

Consequently,

‖Z‖2 = sup
x∈Sn−1

|〈Zx, x〉| ≤ sup
x∈Sn−1

(|〈Zπ(x), π(x)〉|+ 2ε‖Z‖2) .

Then the proof is complete after rearrangement.

Theorem 8.5 Let X ∈ Rn be a mean zero σ2-sub-Gaussian random vector and Σ = E
[
XXT

]
be

its covariance matrix. Let {Xk}mk=1 be i.i.d samples and define Σm = 1
m

∑m
k=1XkX

T
k . Then,

P
[
‖Σm − Σ‖2

σ2
≥ c1

{√
n

m
+
n

m

}
+ t

]
≤ c2exp

(
−c3 min{t, t2}m

)
for all t ≥ 0.

Here, c1, c2, c3 > 0 are absolute numerical constants.
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Proof: Let Z = Σm − Σ. Taking N to be a 1/4-net of Sn−1, we have |N | ≤ 9n and

‖Z‖2 ≤ 2 sup
v∈N
|〈Zv, v〉| .

The overall strategy of the proof is to first consider a fixed v ∈ N and then take a union bound.
For any fixed v ∈ N , we have

〈Zv, v〉 =
1

m

m∑
k=1

((
XT
k v
)2 − E

[(
XT
k v
)2])

.

Since XT
k v is σ2-sub-Gaussian, we have∥∥∥(XT

k v
)2 − E

[(
XT
k v
)2]∥∥∥

Lp
≤
∥∥∥(XT

k v
)2∥∥∥

Lp
+ E

[(
XT
k v
)2]

. σ2p,

implying that
(
XT
k v
)2−E [(XT

k v
)2]

is c4 ·σ4-sub-exponential. Thus the application of the Bernstein

inequality yields that

P
[
|〈Zv, v〉| ≥ δ

2

]
. exp

(
−c5 min

{
δ2

σ4
,
δ

σ2

}
m

)
.

Taking a union bound yields that

P [‖Z‖2 ≥ δ] ≤ P
[

sup
v∈N
|〈Zv, v〉| ≥ δ

2

]
. 9nexp

(
−c5 min

{
δ2

σ4
,
δ

σ2

}
m

)
= exp

(
n log 9− c5 min

{
δ2

σ4
,
δ

σ2

}
m

)
(8.1)

Let δ =
(
c1
{√

n
m + n

m

}
+ t
)
σ2. Then,

δ ≥
(
c1
n

m
+ t
)
σ2 and δ2 ≥

(
c21
n

m
+ t2

)
σ4.

Substituting them into (8.1) yields that

P [‖Z‖2 ≥ δ] . exp
(
n log 9− c5 min

{
c1
n

m
+ t, c21

n

m
+ t2

}
m
)
.

The proof is complete if we take c1 to be sufficiently large.

Remark 8.6 Given the tail bound, it is anticipated to obtain the moment bound, in particularly
on E [‖Σm − Σ‖2]. Since

E
[
‖Σm − Σ‖2

σ2

]
=

∫ ∞
0

P
[
‖Σm − Σ‖2

σ2
≥ x

]
dx
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=

∫ c1{
√

n
m
+ n
m}

0
P
[
‖Σm − Σ‖2

σ2
≥ x

]
dx+

∫ ∞
c1{
√

n
m
+ n
m}

P
[
‖Σm − Σ‖2

σ2
≥ x

]
dx

≤ c1
{√

n

m
+
n

m

}
+

∫ ∞
0

P
[
‖Σm − Σ‖2

σ2
≥ c1

{√
n

m
+
n

m

}
+ t

]
dt

≤ c1
{√

n

m
+
n

m

}
+ c2

∫ ∞
0

exp
(
−c3 min{t, t2}m

)
dt

.

√
n

m
+
n

m
,

it follows that

E [‖Σm − Σ‖2] .
{√

n

m
+
n

m

}
σ2.

Moreover, we have

E [‖Σm‖2] . ‖Σ‖2 +

{√
n

m
+
n

m

}
σ2.

Thus, an upper bound for E [‖Σm‖2] can be derived from the concentration result under less stringent
conditions. Note this bound cannot be obtained via methods discussed in the previous lectures since
they only work for (sub)-Gaussian processes.

Figure 8.1: Σm = 1
mA

TA.

Remark 8.7 Assume Σ = In and Xk is sub-Gaussian with parameter σ2 = 1. Note that we can
express Σm as Σm = 1

mA
TA, where AT = [X1, · · · , Xm] (see Figure 8.3). Thus, Theorem 8.5

implies that, with high probability,

1− c′
√
n

m
≤ σmin(A)√

m
≤ σmax(A)√

m
≤ 1 + c′

√
n

m

for some numerical constant c′ > 0, with the proviso that m ≥ n. That is, A behaves more and
more well-conditioned (like an orthogonal matrix) when m/n increases. This turns out to be a
useful result itself.

4



8.2 Application: Clustering Based on PCA

The PCA paradigm which first projects data onto a low dimensional subspace can be used for data
clustering. For simplicity we consider the following Gaussian mixture model with two different
means {−µ, µ},

X = εµ+ g, (8.2)

where ε ∈ {1,−1} is a Rademacher random variable, µ ∈ Rn is deterministic and g ∈ N (0, In).
In words, sampling from X will generate two clusters of data, obeying N (−µ, In) and N (µ, In)
respectively, see Figure 8.2.
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Figure 8.2: A simulation of points generated according to the Gaussian mixture model (8.2).

Suppose we are given a sample of m points {Xk}mk=1 drawn according to the Gaussian mixture
model and want to identify which points belong to which cluster (i.e., determine they are generated
from which mean). From the simulation, it is not hard to see that the data generated from X is
stretch in the direction of µ, and the data points from different clusters have different inner product
with µ. Assuming ‖µ‖2 > 1, noting that

〈εµ+ g, µ〉 = ε‖µ‖22 + 〈g, µ〉 ,

where the size of 〈g, µ〉 is about ‖µ‖2, the sign of the inner product will coincide with ε, and hence
can tell which mean the data point corresponds to. Indeed, if we define

Zk = (sign(〈εkµ+ gk︸ ︷︷ ︸
Xk

, µ/‖µ‖2〉) 6= εk),

by the Hoeffding inequality, it can be shown that with high probability the number of misclassifi-
cations

∑m
k=1 Zk cannot exceed a fraction of m (show this!).

5



In the situation when we do not know µ but only have access to {Xk}mk=1, we can approximate
µ by PCA since the principal direction of PCA captures the direction that the data points stretch
the most. This gives the spectral algorithm for data clustering (here “spectral” refers to using the
eigenvectors of a matrix for the task since the eigen-decomposition of a matrix is also known as
spectral decomposition),

• Compute the covariance matrix Σm = 1
m

∑m
k=1XkX

T
k .

• Compute the principal eigenvector q (of unit norm) of Σm, i.e., eigenvector corresponding to
the largest eigenvalue of Σm.

• Partition the data points into two clusters based on the sign of 〈Xk, q〉 (data points with the
same sign of 〈Xk, q〉 will be put into the same cluster).

Next we are going to show that q can be close to µ. To this end, we need the Davis-Kahan
theorem.

Theorem 8.8 (Davis-Kahan) Let S and T be two symmetric matrices with the same dimension.
Suppose the i-th largest eigenvalue of S is well separated from the rest of them:

min
j 6=i
|λj(S)− λi(S)| > δ.

Then the acute angle θi between the unit-norm eigenvectors µi(S) and µi(T ) corresponding to the
i-th largest eigenvalues satisfies

sin θi ≤
2‖S − T‖2

δ
.

In particular, there exists a θ ∈ {1,−1} such that ‖µi(S)− µi(T )‖2 ≤ 23/2‖S − T‖2/δ.

Note that

Σ = E
[
XXT

]
= µµT + In,

and the largest eigenvalue of Σ is 1 + ‖µ‖22, with the corresponding normalized eigenvector µ/‖µ‖2.
Since X is a sub-Gaussian random vector with the parameter proportional to ‖µ‖22 (check this!),
By Theorem 8.5, we have

‖Σm − Σ‖2 ≤ ρ‖µ‖22, (8.3)

for a sufficiently small ρ > 0 when m & n (the hidden constant relies on ρ). Noting the gap between
the first and second largest eigenvalues of Σ is ‖µ‖22, the Davis-Kahan theorem together with (8.3)
implies that

∃ θ ∈ {1,−1} such that ‖q − θ(µ/‖µ‖2)‖2 ≤ ρ′,

where ρ′ > 0 is also a sufficiently small number (a multiple of ρ).
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8.3 Matrix Bernstein Inequality

In the last section, we have studied the covariance matrix concentration based on the distributional
information of the matrix elements (e.g, certain sub-Gaussian rows). When there is no distribution
assumption to use, we may develop matrix concentration inequalities via the matrix Chernoff
method, which imitates the Chernoff method for random variables. Both the matrix Hoeffding
inequality and the matrix Bernstein inequality can be developed this way. In this section we focus
on the more widely used matrix Bernstein inequality.

8.3.1 Matrix Calculus

In this section we use Sn×n to denote the set of n× n symmetric matrices and use Sn×n+ to denote
the set of n× n symmetric and positive definite matrices. In addition, we say X � Y or Y � X if
Y −X is positive semidefinite.

Definition 8.9 (Matrix Function) Let X ∈ Sn×n with the eigenvalue decomposition X = QΛQT =∑n
k=1 λkqkq

T
k . Given a function f : R→ R, we define f(X) as

f(X) =
n∑
k=1

f(λk)qkq
T
k

In other words, we compute f(X) by applying f(·) to each eigenvalue of X while the eigenvectors
remain unchanged.

Example 8.10 Let f(x) = a0 + a1x+ · · ·+ ajx
j. Then,

f(X) = a0I + a1X + · · ·+ ajX
j .

Example 8.11 Let f(x) = ex. Then,

f(X) = eX = I +X +
X2

2!
+
X3

3!
+ · · · =

∞∑
k=0

Xk

k!
.

Example 8.12 Let f(x) = log x. Then, for X ∈ Sn×n+ ,

ef(X) = elogX = X.

Exercise 8.13 Let X and Y be two matrices in Sn×n.

1. Show that if the matrices commute (i.e., XY = Y X), then

eX+Y = eXeY .

2. Give an example of two matrices X and Y such that

eX+Y 6= eXeY .
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Note that the identity ex+y = exey plays a crucial role in the proof of the concentration of the
sum of random variables. Indeed, this identity allows us to tensorize, i.e., to break the moment
generating function of variable sum into the product of exponentials. Unfortunately, as we see in
the above exercise, similar identity does not hold for matrices in general. Nevertheless, there are
useful substitutes in terms of the matrix trace, which are stated below without proofs.

Lemma 8.14 (Golden-Thompson inequality) For two matrices X and Y in Sn×n, we have

trace
(
eX+Y

)
≤ trace

(
eXeY

)
.

Lemma 8.15 (Lieb inequality) Let H ∈ Sn×n. Define the function on the set Sn×n+ ,

f(X) = trace (exp (H + logX)) .

Then f(X) is a concave function on Sn×n+ .

Remark 8.16 The Jensen inequality still holds for random matrices since we can interpret f(X)
as a function of all the entries of X. Thus, letting X be a random matrix, we have

E [trace (exp (H + logX))] ≤ trace (exp (H + logE [X]))

Letting X = eZ , we have

E [trace (exp (H + Z))] ≤ trace
(
exp

(
H + logE

[
eZ
]))

. (8.4)

This inequality will be used in the proof of the matrix Bernstein inequality.

Both the Golden-Thompson inequality and the Lieb inequality can be used to establish the
matrix Bernstein inequality. We will use the Lieb inequality next as it tensorizes better and thus
yields better parameter dependence.

8.3.2 Matrix Bernstein Inequality

Theorem 8.17 (Matrix Bernstein inequality) Let X1, · · · , Xm be independent, mean zero, n×
n symmetric random matrices. Assume ‖Xk‖2 ≤ B almost surely for all k. Then, for any t ≥ 0,
we have

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ t

]
≤ 2n · exp

(
− t2/2

σ2 +Bt/3

)
,

where σ2 =
∥∥∑m

k=1 E
[
X2
k

]∥∥
2
.

Note that the matrix Bernstein is an exact analogue of the Bernstein inequality for random variables.
Thus, the overall proof strategy is similar to that for the variable case. We start by establishing a
matrix MGF inequality.

Lemma 8.18 (Moment generating function of random matrix) Let X ∈ Sn×n be a mean
zero random matrix which satisfies ‖X‖2 ≤ B almost surely. Then,

E [exp (λX)] � exp
(
g(λ)E

[
X2
])

where g(λ) =
λ2/2

1−B|λ|/3

provided that |λ| < 3/B.
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Proof: First it can be shown that (check this!)

ez ≤ 1 + z +
1

1− |z|/3
· z

2

2
if |z| < 3.

Thus, for |x| ≤ B, if |λ| < 3/B, then

eλx ≤ 1 + λx+ g(λ)x2.

It follows that

exp (λX) � I + λX + g(λ)X2,

provided ‖X‖2 ≤ B and |λ| < 3/B. Taking expectation on both sides yields that

E [exp (λX)] � I + g(λ)E
[
X2
]
� exp

(
g(λ)E

[
X2
])
,

as desired.

Proof: [Proof of Theorem 8.17] Noting that∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

= max

{
λmax

(
m∑
k=1

Xk

)
, λmax

(
−

m∑
k=1

Xk

)}
,

it suffices to show that P [λmax (
∑m

k=1Xk) ≥ t] ≤ n·exp
(
− t2/2
σ2+Bt/3

)
, and the bound for P [λmax (−

∑m
k=1Xk) ≥ t]

can be established in the same manner. To this end, for fixed λ ≥ 0 and the application of the
Markov inequality gives

P

[
λmax

(
m∑
k=1

Xk

)
≥ t

]
= P

[
exp

(
λ · λmax

(
m∑
k=1

Xk

))
≥ exp (λt)

]

≤ exp (−λt)E

[
exp

(
λ · λmax

(
m∑
k=1

Xk

))]

= exp (−λt)E

[
λmax

(
exp

(
λ ·

m∑
k=1

Xk

))]

≤ exp (−λt)E

[
trace

(
exp

(
λ ·

m∑
k=1

Xk

))]
. (8.5)

To apply the Lieb inequality (8.4), letting H = λ
∑m−1

k=1 Xk and Z = λXm, we have

E

[
trace

(
exp

(
λ ·

m∑
k=1

Xk

))]
≤ E

[
trace

(
exp

(
λ
m−1∑
k=1

Xk + logE
[
eλXm

]))]

Repeating this process yields that

E

[
trace

(
exp

(
λ ·

m∑
k=1

Xk

))]
≤ trace

(
exp

(
m∑
k=1

logE
[
eλXk

]))
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≤ trace

(
exp

(
m∑
k=1

log exp
(
g(λ)E

[
X2
k

])))

= trace

(
exp

(
g(λ)

m∑
k=1

E
[
X2
k

]))

≤ n

∥∥∥∥∥exp

(
g(λ)

m∑
k=1

E
[
X2
k

])∥∥∥∥∥
2

= n · exp

(
g(λ)

∥∥∥∥∥
m∑
k=1

E
[
X2
k

]∥∥∥∥∥
2

)
= n · exp

(
g(λ)σ2

)
provided |λ| ≤ 3/B, where in the second line we have used Lemma 8.18 for every E

[
eλXk

]
, the last

line follows from the definition of σ2. Plugging this bound into (8.5) gives

P

[
λmax

(
m∑
k=1

Xk

)
≥ t

]
≤ n · exp

(
−λt+ g(λ)σ2

)
.

Note that this bound holds for all 0 < λ < 3/B, and thus we can minimize the right side over this
interval. Indeed, the minimum is attained at λ = t/(σ2 +Bt/3), yielding

P

[
λmax

(
m∑
k=1

Xk

)
≥ t

]
≤ n · exp

(
− t2/2

σ2 +Bt/3

)
,

which is the desirable bound.
From the tail bound on ‖

∑m
k=1Xk‖2, we can obtain a bound on the expectation.

Theorem 8.19 (Matrix Bernstein in expectation) Let X1, · · · , Xm be independent, mean zero,
n × n symmetric random matrices. Assume ‖Xk‖2 ≤ B almost surely for all k and let σ2 =∥∥∑m

k=1 E
[
X2
k

]∥∥
2
. Then,

E

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

]
. σ

√
log n+B log n.

Proof: By Theorem 8.17, it is not hard to show that (check this!) there exists an absolute
numerical constant c > 0 such that

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ c
(
σ
√

log n+ u+B(log n+ u)
)]
≤ 2e−u.

Thus,

E

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

]
=

∫ ∞
0

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ t

]
dt
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=

∫ c(σ
√
logn+B logn)

0
P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ t

]
dt+

∫ ∞
c(σ
√
logn+B logn)

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ t

]
dt

≤ c
(
σ
√

log n+B log n
)

+

∫ ∞
0

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ c
(
σ
√

log n+ u+B(log n+ u)
)]( cσ

2
√

log n+ u
+ cB

)
du

≤ c
(
σ
√

log n+B log n
)

+

(
cσ

2
√

log n
+ cB

)∫ ∞
0

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ c
(
σ
√

log n+ u+B(log n+ u)
)]

du

≤ c
(
σ
√

log n+B log n
)

+

(
cσ√
log n

+ cB

)∫ ∞
0

e−udu

. σ
√

log n+B log n,

which completes the proof.
The matrix Bernstein inequality can be extended to non-symmetric and non-square matrices.

Theorem 8.20 (Matrix Bernstein inequality for rectangular matrices) Let X1, · · · , Xm be
independent, mean zero, n1 × n2 matrices. Assume ‖Xk‖2 ≤ B almost surely for all k. Then, for
any t ≥ 0, we have

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

≥ t

]
≤ 2(n1 + n2) exp

(
− t2/2

σ2 +Bt/3

)
,

where

σ2 = max

(∥∥∥∥∥
m∑
k=1

E
[
XkX

T
k

]∥∥∥∥∥
2

,

∥∥∥∥∥
m∑
k=1

E
[
XT
k Xk

]∥∥∥∥∥
2

)
.

Proof: Apply Theorem 8.17 to the sum of

[
0 XT

k

Xk 0

]
.

8.4 Application: Covariance Matrix for General Distributions

In the first section we have considered the covariance matrix problem when the random vector is
sub-Gaussian. In this section we remove the sub-gaussian requirement and consider the case when
the random vector has bounded `2-norm. In this situation, the Bernstein inequality will yield better
result than simply using Theorem 8.5 with a crude estimation of the sub-Gaussian parameter based
on the `2-norm of the random vector.

Theorem 8.21 Let X1, · · · , Xm ∈ Rn be i.i.d zero mean random vectors with covariance Σ =
E
[
XkX

T
k

]
. Assume ‖Xk‖2 ≤

√
b almost surely. Then for any t > 0, the sample covariance matrix

Σm = 1
m

∑m
k=1XkX

T
k satisfies

P [‖Σm − Σ‖2 ≥ t] ≤ 2n · exp

(
− mt2/2

b‖Σ‖2 + 2bt/3

)
.

11



In addition, we have

E [‖Σm − Σ‖2] .
√
b‖Σ‖2 log n

m
+
b log n

m
.

Proof: First note that if ‖Xk‖2 ≤
√
b, there holds (check this!)

‖Σ‖2 =
∥∥E [XkX

T
k

]∥∥
2
≤ b.

Letting Zk = 1
m

(
XkX

T
k − Σ

)
, it follows that

‖Zk‖2 ≤
1

m

∥∥XkX
T
k

∥∥
2

+
1

m
‖Σ‖2 ≤

2b

m
.

Moreover, we have

E
[
Z2
k

]
=

1

m2

(
E
[
(XkX

T
k )2
]
− Σ2

)
� 1

m2
E
[
‖Xk‖22XkX

T
k

]
� b

m2
Σ.

It follows that,

σ2 =

∥∥∥∥∥
m∑
k=1

E
[
Z2
k

]∥∥∥∥∥
2

≤ b‖Σ‖2
m

.

Thus, applying Theorems 8.17 and 8.19 concludes the proof.

Example 8.22 Let Xk =
√
nekj , where ekj is the kj-th canonical vector in Rn with kj being

sampled uniformly at random from {1, · · · , n}. Then

E
[
XkX

T
k

]
=

n∑
j=1

eje
T
j = In and ‖Xk‖2 ≤

√
n.

Thus, by Theorem 8.21, we have

E [‖Σm − In‖2] .
√
n log n

m
+
n log n

m
.

8.5 Application: Sparse Recovery

Consider the following underdetermined linear system (see Figure 8.3 for a pictorial illustration):

y = Ax∗ + w, (8.6)

where A ∈ Rm×n is a fat matrix with m < n, y denotes the observation, x∗ denotes the parameter
to be estimated or signal to be reconstructed, and w denotes the measurement noise. The goal is
to infer or reconstruct x∗ from the observation y.

The linear model (8.6) arises in many statistical and signal processing applications. In statistics,
(8.6) models the regime where the number of responses is fewer than the number of predictors (or
covariates). In signal processing, it describes the problem where the number of measurements
is smaller than size of the signal. Since the number of unknowns is larger than the number of
equations, (8.6) does not admit a unique solution, in contrast to the classical least squares problem.
Therefore, additional structures on the unknown vector x∗ is needed to reduce the feasible space.
In this section we will focus on the sparse solution, namely x∗ only has a few nonzero entries.
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Figure 8.3: A pictorial illustration of (8.6).
.

Definition 8.23 (Sparse vector) A vector x ∈ Rn is said to s-sparse if the number of nonzero
entries in x is less than or equal to s. In other words, if we define

‖x‖0 = # {k ∈ {1, · · · , n} : xk 6= 0}

which counts the number of nonzero entries in x, then x is s-sparse if ‖x‖0 ≤ s.

In this lecture we will refer ‖ · ‖0 as the `0-norm though it is technically not a norm. The notion
of sparsity plays an important role in modern statistics, signal processing and machine learning,
which characterizes a special type of low dimensional structure.

• In statistics, especially in the context of variable selection, it means only a number of covari-
ates play an important role (a typical example is genome expression).

• In signal processing or machine learning, it means the signal of interest has the sparse structure
itself or under certain linear transform.

A basic question to answer is how and when one can reconstruct the sparse vector x∗ when there
are fewer observations. There have been many methods for sparse parameter estimation or
sparse signal reconstruction, including both the convex and nonconvex methods. In this lecture,
we study the most widely studied methods based on the `1-norm. For simplicity, we only consider
the noiseless case (i.e., w = 0). The noisy case can discussed in an overall similar way, see the
references for details.

8.5.1 Exact Recovery in the Noiseless Setting

Since we know x∗ is a sparse signal it is natural to reconstruct it by seeking the sparsest vector which
is consistent with the measurement, namely by solving the following `0-minimization problem:

min
x∈Rn

‖x‖0 subject to Ax = y. (8.7)

However, the `0 minimization problem is nonconvex and computationally intractable due to the
combinatorial nature of `0-norm. In optimization, convex relaxation is a widely used technique

13



to handle nonconvex problems. Here, the nearest convex relaxation of the `0-norm is the `1-norm
which sums up the magnitudes of all the entries of a vector (i.e., ‖x‖1 =

∑n
k=1 |xk|). Replacing the

`0-norm with the `1-norm in the objective leads to the following `1-minimization,

min
x∈Rn

‖x‖1 subject to Ax = y. (8.8)

The `1-minimization problem is also known as basis pursuit in the literature. It is a convex problem
which can be rewritten as a linear programming. It can be solved by the first order or the second
order methods. Indeed, the `1-minimization problem has spurred the significant development of
the first order methods in optimization.

A central question in this section is when the `1-minimization is able to recover the target sparse
solution x∗. To understand why the `1-minimization returns a sparse solution we first present the
intuition and then give a rigorous analysis. Noting that (8.8) is trivially equivalent to

min
t∈R

t subject to ‖x‖1 = t and Ax = y.

That is, the solution to (8.8) can be found by gradually enlarge the `1-ball until the ball intersect
with the solution set, see Figure 8.4. Since the `1-ball is pointy at its vertices (or the extreme sets
in high dimension), the vertices will first touch the solution set. Noting the vertices have fewer
nonzero entries, the `1-minimization tends to return a sparse solution.

Figure 8.4: A pictorial illustration of `1-minimization.
.

There are several different conditions which have been developed for the guarantee analysis of
the `1-minimization. In this lecture we will adopt the restricted isometry property proposed by
Candes and Tao [2005].

Definition 8.24 (Restricted Isometry Property (RIP)) Given an integer s ∈ {1, · · · , n}, we
say the matrix A ∈ Rm×n (m < n) satisfies the restricted isometry property with the constant δs if

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 (8.9)

holds for all s-sparse vectors x such that ‖x‖0 ≤ s.

The restricted isometry property basically means that every s columns of A, denoted AS with
|S| = s, form a nearly orthogonal matrix when δs is small since it can be easily seen that (8.9) is
equivalent to

‖ASATS − Is‖2 ≤ δs (8.10)
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for any subset S of cardinality at most s, where AS denotes the sub-matrix formed by the columns
of A in S.

We are now in position to present a rigorous analysis about when the `1 minimization is able to
exactly reconstruct the target solution x∗ based on the restricted isometry property of the matrix.

Theorem 8.25 (Exact recovery) Let y = Ax∗, where x∗ is a s-sparse vector (i.e., ‖x∗‖0 ≤ s).
If the RIP constant of A of order 3s satisfies δ3s < 1/3, then the solution to (8.8) is x∗. That is,
the `1 minimization is able to exactly recovery the sparse vector x∗.

A careful reader may wonder when a matrix A satisfies the condition δ3s < 1/3. As can be
seen in the last section, certain random matrix satisfies this condition with high probability when
m & s log n.

Proof: [Proof of Theorem 8.25] Let S denote the support of x∗ and Sc denote the complement of
S in {1, · · · , n}. We first show that for any x = x∗+h ∈ Rn, if ‖x‖1 ≤ ‖x∗‖1, then there must hold

‖hSc‖1 ≤ ‖hS‖1. (8.11)

This follows from

‖x∗‖1 ≥ ‖x‖1 = ‖x∗ + h‖1 = ‖x∗S + hS‖1 + ‖hSc‖1 ≥ ‖x∗S‖1︸ ︷︷ ︸
=‖x∗‖1

−‖hS‖1 + ‖hSc‖1.

Thus it suffices to show the following nullspace property2: for any h in the nullspace of A (i.e.,
Ah = 0), if h satisfies (8.11), then we must have h = 0.

Next we are going to show that if δ3s < 1/3, the nullspace property holds. To this end, let
S0 = S be the support of x∗, let S1 be the first 2s largest entries (in magnitude) of hSc , let S2 be
the second 2s largest entries (in magnitude) of hSc ,and so on. Let hSj ∈ Rn be the vector such
hSj (i) = h(i) when i ∈ Sj and h(Sj)(i) = 0. With a slight abuse of notion, we also use hSj to
denote the vector segment supported on Sj . Noting that

0 = Ah = AhS0∪S1 +
∑
j≥2

AhSj ,

we have

0 ≥ ‖AhS0∪S1‖2 − ‖
∑
j≥2

AhSj‖2

≥ ‖AhS0∪S1‖2 −
∑
j≥2
‖AhSj‖2

≥
√

1− δ3s‖hS0∪S1‖2 −
√

1 + δ3s
∑
j≥2
‖hSj‖2. (8.12)

2The nullspace property for sparse recovery which basically means that the nullspace of A does not insects with
the descent direction of the `1-norm at x∗. It is actually both sufficient and necessary for exact recovery of basis
pursuit, see for example [1]. Theorem 8.25 gives a sufficient condition for this property to hold in terms of the RIP
constant.
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Moreover, a simple calculation yields that∑
j≥2
‖hSj‖2 ≤

∑
j≥2

√
2s‖hSj‖∞

≤
∑
j≥2

‖hSj−1‖1√
2s

≤ 1√
2s
‖hSc‖1

≤ 1√
2s
‖hS‖1

≤ 1√
2
‖hS‖2

≤ 1√
2
‖hS0∪S1‖2, (8.13)

where the fourth line follows from (8.11). Inserting this inequality into (8.12) gives(√
1− δ3s −

√
1 + δ3s√

2

)
‖hS0∪S1‖2 ≤ 0.

Since
√

1− δ3s−
√
1+δ3s√

2
> 0 due to the assumption δ3s < 1/3, ‖hS0∪S1‖2 = 0 and thus ‖h‖2 = 0.

8.5.2 Random Matrices Satisfying RIP

Theorem 8.26 Let A be an m×n matrix whose rows Ai are independent, isotropic (i.e., E
[
ATi Ai

]
=

In), sub-Gaussian vectors with parameter σ2 = 1. Then, if

m & δ−2s log n,

the matrix A/
√
m satisfies the RIP with a small constant 0 < δ < 1 with probability at least

1− c2 · exp
(
−c4δ2m

)
, where c2 and c4 are numerical constants.

Proof: Recall that, by (8.10), it is enough to show∥∥∥∥ 1

m
ATSAS − Is

∥∥∥∥
2

≤ δ

for all subsets S of cardinality s, where AS denotes the sub-matrix constructed from the columns
of A in S.

For a fixed subset S, first note that Ai(S) is also σ2-sub-Gaussian (why?) and it also satisfies
E
[
Ai(S)TAi(S)

]
= Is. Thus, the application of Theorem 8.5 implies that

P
[∥∥∥∥ 1

m
ATSAS − Is

∥∥∥∥
2

≥ c1
√

s

m
+ t

]
≤ c2exp

(
−c3 min{t, t2}m

)
,

provided m ≥ s. Let t = δ
2 . If m & c · δ−2s log n for a sufficiently large constant c > 0, then∥∥∥∥ 1

m
ATSAS − Is

∥∥∥∥
2

≤ c1
√

s

m
+
δ

2
≤ δ
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for all subsets S of cardinality s with probability at least

1−
(
n

s

)
· c2exp

(
−c3δ2m

)
≥ 1− c2 · exp

(
s log n− c3δ2m

)
≥ 1− c2 · exp

(
−c4δ2m

)
,

which completes the proof.
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