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Motivation: We are interested in bounding the random variable

sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ , (7.1)

where F is a class of functions. That is, we want to estimate the deviation between 1
n

∑n
k=1 f(Xk)

and E [f(X)] uniformly over the class F – hence the name of uniform laws of large numbers (ULLN).
Here, we ignore the measurability issue after taking the supremum. This problem arises in a wide
range of applications. We first give several typical examples.

Wasserstein law of large numbers Let X1, · · · , Xn be i.i.d samples from a population measure
P, where P is a probability measure on [0, 1]. Define the following empirical measure

Pn =
1

n

n∑
k=1

δXk
.

Then a natural question is how well Pn stands for P. For a realization, the Wasserstein distance
between Pn and P is given by

W1(Pn,P) = sup
f∈F
|EPn [f(Z)]− EP[f(Z)]|

where F = {f ∈ Lip ([0, 1], | · |) : 0 ≤ f ≤ 1} is a set of 1-Lipschitz functions. It is evident that
W1(Pn, P ) is in the form of (7.1). In this case, the related result is also known as Wasserstein law
of large numbers.

Classical Glivenko–Cantelli theorem Letting X ∼ P, the cumulative distribution function
(CDF) F (a) is given by F (a) = P [X ≤ a]. Given a set of i.i.d samples {Xk}nk=1, we can estimate
F by the empirical CDF,

F̂n(a) =
1

n

n∑
k=1

1(−∞,a](Xk),

i.e., the empirical frequency over (−∞, a]. Then it is natural to ask whether∣∣∣F̂n(a)− F (a)
∣∣∣ is small uniformly for all a ∈ R?

The classical Glivenko–Cantelli theorem answers this question in an affirmative way. Letting F =
{1(−∞,a](x) : a ∈ R}, since E

[
1(−∞,a](X)

]
= F (a), we actually need to bound (7.1), where F is

given by

F = {1(−∞,a], a ∈ R}. (7.2)
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Generalization analysis in statistical learning Given a pair of random variables (X,Y ), a
central task in statical learning is to find the relationship between X and Y . This is typically
formed as the problem of finding a function (hypothesis) h in a function class H such that the
population risk

R(h) = E [L(h(X), Y )]

is minimized. Here L(·, ·) represents certain loss function. However, since we do not know the
distribution of by only have access to a set of i.i.d samples X1, · · · , Xn, a computationally tractable
alternative is to minimize the empirical risk,

R̂n(h) =
1

n

n∑
k=1

L(h(Xk), Yk).

Letting h∗ be the minimizer of R(h) and ĥ∗n be the minimizer of R̂n(h), in order for ĥ∗n to generalize
well for the entire distribution, we wish R(ĥ∗n) should be close to R(h∗). This can be achieved if
R̂n(h) is close to R(h) for all h ∈ H since then they will have their minimizers close to each other.
More precisely, the excess risk defined by R(ĥ∗n)−R(h∗) satisfies

R(ĥ∗n)−R(h∗) =
(
R(ĥ∗n)− R̂n(ĥ∗n)

)
+
(
R̂n(ĥ∗n)− R̂n(h∗)

)
+
(
R̂n(h∗)−R(h∗)

)
≤
∣∣∣R(ĥ∗n)− R̂n(ĥ∗n)

∣∣∣+
∣∣∣R̂n(h∗)−R(h∗)

∣∣∣
≤ 2 sup

h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ . (7.3)

Thus, in order to bound the generalization error R(ĥ∗n)−R(h∗), it suffices to bound

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ = sup

h∈H

∣∣∣∣∣ 1n
n∑
k=1

L(h(Xk), Yk)− E [L(h(X,Y ))]

∣∣∣∣∣ (7.4)

If we define

f(Z1, · · · , Zn) := sup
h∈H

∣∣∣∣∣ 1n
n∑
k=1

L(h(Xk), Yk)− E [L(h(X), Y )]

∣∣∣∣∣ , where Zk = (Xk, Yk),

it is easy to see that (7.4) is a special case of (7.1).

Under some proper conditions (e.g., ‖f‖∞ ≤ b for f ∈ F), it is easy to show that the quantity
in (7.1) concentrates around its mean, for example by bounded difference inequality. Thus, we will
focus on its expectation

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
. (7.5)

Note that when there is single function in F , we have

E

[∣∣∣∣∣ 1n
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
.

1√
n
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under some mild moment assumptions. It is intriguing to see whether this is also true when F has
many functions, which is also the desirable goal to pursue.

Agenda:

• Wasserstein Law of Large Numbers

• Symmetrization, VC Dimension

• Classical Glivenko-Cantelli Theorem

• Statistical Learning

7.1 Wasserstein Law of Large Numbers

In this section, we consider (7.5) for the case

F = {f ∈ Lip ([0, 1], | · |) : 0 ≤ f ≤ 1}.

The following theorem establishes the covering number of F under the infinity norm.

Lemma 7.1 There is a numerical constant c > 0 such that

N(F , ‖ · ‖∞, ε) ≤ ec/ε for ε <
1

2
and N(F , ‖ · ‖∞, ε) = 1 for ε ≥ 1

2
.

Proof: The claim N(F , ‖ ·‖∞, ε) = 1 for ε ≥ 1
2 is trivial since

∥∥f − 1
2

∥∥
∞ ≤

1
2 for each f ∈ F . The

proof of the first claim is basically based on approximating f with piecewise constant functions,
see [2] for details.

7.1.1 First Effort via Finite Approximation

For ease of notation, let Zf = 1
n

∑n
k=1 f(Xk)− E [f(X)]. First note that Zf is 1/4n-sub-Gaussian

since f ∈ [0, 1] (check this!). Letting N be the ε-net of (F , ‖ · ‖∞), by Lemma 7.1, we have
N(F , ‖ · ‖∞, ε) ≤ ec/ε, for ε < 1/2. Thus,

E

[
sup
f∈F
|Zf |

]
≤ inf

0<ε<1/2

{
E

[
sup
f∈F
|Zf − Zπ(f)|

]
+

√
c

2nε

}
Moreover, we have

|Zf − Zπ(f)| =

∣∣∣∣∣
(

1

n

n∑
k=1

(f(Xk)− π(f)(Xk))

)
+ E [π(f)(X)− f(X)]

∣∣∣∣∣
≤ 2

n

n∑
k=1

‖f − π(f)‖∞

≤ 2ε.

It follows that

E

[
sup
f∈F
|Zf |

]
≤ inf

0<ε<1/2

{
2ε+

√
c

2nε

}
� n−1/3,

which is sub-optimal.

3



7.1.2 Second Effort via Dudley Integral

With the same definition of Zf as in the last subsection, we have that

Zf − Zg =
1

n

n∑
k=1

(f(Xk)− g(Xk)− (E [f(Xk)]− E [g(Xk)])

is 1
n‖f − g‖

2
∞-sub-Gaussian. Thus, if we define

d(f, g) = n−1/2‖f − g‖∞,

then Zf − Zg is d(f, g)2-sub-Gaussian. In addition, it is easily seen that (check this!)

N(F , n−1/2‖ · ‖∞, ε) = N(F , ‖ · ‖∞, n1/2ε).

Thus, the application of the Dudley integral (note that 0 ∈ F) yields

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− E [f(X)]

∣∣∣∣∣
]
.
∫ ∞
0

√
logN(F , ‖ · ‖∞, n1/2ε)dε

=
1√
n

∫ ∞
0

√
logN(F , ‖ · ‖∞, ε)dε

=
1√
n

∫ 1/2

0

√
c

ε
dε

� 1√
n
.

7.2 Symmetrization, VC Dimension

For the problem in the last section, the infinite norm can be used to bring out the sub-Gaussian
nature of the process, and thus the tight 1/

√
n bound can be established via Dudley integral.

However, for many cases, it is not efficient to bound the increments using the infinite norm and
weaker metrics should be considered. Consider F given in (7.2). Since

‖1(−∞,a] − 1(−∞,a′]‖∞ = 1 whenever a 6= a′,

we have N(F , ‖ · ‖∞, ε) = ∞ for ε < 1. Thus, substituting this into Dudley integral is not quite
meaningful. The symmetrization argument provides a way to overcome this pitfall, which allows us
to use the Dudley integral based on covering under potentially a smaller distance through separating
the sign (or “Gaussian part”) out from its magnitude . To motivate the symmetrization argument,
consider the random variable

∑n
k=1Xk where Xk are independent mean zero random variables.

When the magnitude of each Xk is of the order O(1), a naive bound for |
∑n

k=1Xk| would be O(n).
However, by the central limit theorem, a more desirable bound would be O(

√
n). This is due to

that the terms in the sum are independent and centered, so they are likely to have opposite signs,
yielding the cancellation effect. Therefore, the random sign

∑n
k=1 sign(Xk) plays an essential role

in the Gaussian tail while the magnitudes of Xk only determine the variance.
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7.2.1 Symmetrization

As already mentioned, the symmetrization technique separates the sign (or “Gaussian part”) of
the process out from its magnitude and analyze each part sequentially. This allows us to provide
bounds for (7.1) more efficiently.

Lemma 7.2 (Upper bound by symmetrization) Let {Xk}nk=1 be i.i.d random variables. Then,

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
≤ 2EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]
,

where {εk}nk=1 is a collection of i.i.d Rademacher random variables.

Proof: Let {Yk}nk=1 be i.i.d copies of {Xk}nk=1. We have

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(X)])

∣∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− EY [f(Yk)])

∣∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣∣EY
[

n∑
k=1

(f(Xk)− f(Yk))

]∣∣∣∣∣
]

≤ EX

[
sup
f∈F

EY

[∣∣∣∣∣
n∑
k=1

(f(Xk)− f(Yk))

∣∣∣∣∣
]]

≤ EX,Y

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− f(Yk))

∣∣∣∣∣
]
.

where the third line follows from Jensen inequality. Noting that f(Xk) − f(Yk) is symmetric and
thus has the same distribution with εk(f(Xk)− f(Yk)), it follows that

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(X)])

∣∣∣∣∣
]
≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(εk(f(Xk)− f(Yk)))

∣∣∣∣∣
]

≤ EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]

+ EY,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Yk)

∣∣∣∣∣
]
,

which completes the proof since {Yk}nk=1 are i.i.d copies of {Xk}nk=1.

Lemma 7.3 (Lower bound by symmetrization) Let {Xk}nk=1 be i.i.d random variables. Then,

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
≥ 1

2
EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk (f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
,

where {εk}nk=1 is a collection of i.i.d Rademacher random variables.

Proof: We have

EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk (f(Xk)− EX [f(Xk)])

∣∣∣∣∣
]
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= EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk (f(Xk)− EY [f(Yk)])

∣∣∣∣∣
]

≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk (f(Xk)− f(Yk))

∣∣∣∣∣
]

= EX,Y

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− f(Yk))

∣∣∣∣∣
]

≤ E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]

+ E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Yk)− E [f(Yk)])

∣∣∣∣∣
]
,

which completes the proof since {Yk}nk=1 are i.i.d copies of {Xk}nk=1.

Remark 7.4 Note the right hand side in Lemma 7.3 cannot be replaced by EX,ε
[
supf∈F |

∑n
k=1 εkf(Xk)|

]
since a counter example can be easily constructed for the n = 1 case.

To upper bound (7.5), by Lemma 7.2, it suffices to bound

EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]
. (7.6)

For this, we can first condition on X = (x1, · · · , xn) and bound

Eε

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εkf(xk)

∣∣∣∣∣
]

(7.7)

and then take expectation with respect to X. It follows that

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
.

√√√√E

[
sup
f∈F

n∑
k=1

f2(Xk)

]√
log ΠF (n), (7.8)

where

ΠF (n) := max
{x1,··· ,xn}⊂X

|{(f(x1), · · · , f(xn)) : f ∈ F}| . (7.9)

Note that when |F| = ∞ in which case a direct bound uniform bound for (7.5) fails. In contrast,
it is possible that ΠF (n) is finite (e.g., when F a class of binary value functions for classification
problems). Assuming ‖f‖∞ ≤ b for all f ∈ F , we can still work out an upper bound for (7.5)
through (7.7) and obtain

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣
]
.

√√√√E

[
sup
f∈F

n∑
k=1

f2(Xk)

]√
log ΠF (n) ≤

√
nb
√

log ΠF (n).

(7.10)

Next we will focus on the case when F a class of binary value functions (and hence ΠF (n) is
finite, at most 2n). It can be shown that the growth of ΠF (n) is determined by a notion called VC
dimension. In other words, VC dimension provides a different way to quantify the complexity of
the function class F . Though we only discuss the VC dimension for the families of binary value
functions, it can be extended to general classes of functions, see for example Chapter 7.3 of [2].
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7.2.2 VC Dimension

Definition 7.5 (Shattering and VC dimension) Let F be a class of binary value functions.
We say a set (x1, · · · , xn) ⊂ X is shattered by F if

|{(f(x1), · · · , f(xn)) : f ∈ F}| = 2n.

The VC dimension of F , denoted v(F) or simply v for short, is defined as the largest integer n for
which there exists a collection of points (x1, · · · , xn) that is shattered by F .

Remark 7.6 By the definition, when n > v, then for any collection of points (x1, · · · , xn),

|{(f(x1), · · · , f(xn)) : f ∈ F}|

must be exactly smaller than 2n. In terms of the growth function in (7.9), the VC dimension is the
largest integer n such that ΠF (n) = 2n.

Exercise 7.7 If there exists n points that can be shattered, why for any m < n there exists m
points hat can also be shattered? If there does not exist n points that can be shattered, why for any
m > n there does not exist m points that can be shattered?

Figure 7.1: Example I

Example 7.8 Figures 7.1, 7.2 and 7.3 give three examples with finite VC dimension, where

F = {1S(x), S ∈ S} .

There also exists set S such that the VC dimension of F is infinite, see [3].

For the function class having a finite VC dimension, it turns out its growth function is of the
polynomial order in n.
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Figure 7.2: Example II

Lemma 7.9 (Sauer-Shelah) For all n ≥ v and (x1, · · · , xn) ⊂ X , there holds

ΠF (n) := max
{x1,··· ,xn}⊂X

|{(f(x1), · · · , f(xk)) : f ∈ F}| ≤
v∑
k=0

(
n

k

)
≤
(en
v

)v
.

Proof: The second inequality follows directly from the combinatorial argument

v∑
k=0

(
n

k

)
≤

v∑
k=0

(
n

k

)(n
v

)v−k
≤

n∑
k=0

(
n

k

)(n
v

)v−k
=
(n
v

)v n∑
k=0

(
n

k

)( v
n

)k
=
(n
v

)v
(1 + v/n)n

≤
(en
v

)v
The first inequality follows from an inductive argument and the details will be omitted. Interested
readers may find them in [1] and [3].

Note that Lemma 7.9 is a truly deep result. For n > v(F), though the definition of VC dimension
implies that |{(f(x1), · · · , f(xn)) : f ∈ F}| < 2n for any (x1, · · · , xn), this does not exclude the
possibility that there exists a (x1, · · · , xn) such that |{(f(x1), · · · , f(xn)) : f ∈ F}| = 2n − 1.
However, the Sauer-Shelah lemma says that this cannot be true.
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Figure 7.3: Example III

Exercise 7.10 For the three examples in Example 7.8, show that |{(f(x1), · · · , f(xn)) : f ∈ F}| .
nv directly rather that using the Sauer-Shelah lemma.

7.3 Classical Glivenko-Cantelli Theorem

In this section we return back to the problem of estimating E
[
‖F̂n − F‖∞

]
, where F and F̂n are

CDF and empirical CDF, respectively. It corresponds to estimating (7.5) for F = {1(−∞,a](x) : a ∈
R}. By Example 7.8, we first know that v(F) = 1. It follows from the Sauer-Shelah lemma that
Πn(F) . n. Together with (7.10), we have

E
[
‖F̂n − F‖∞

]
.

√
log n

n
, (7.11)

Remark 7.11 By certain central limit theorem (Kolmogorov theorem), one can directly show that
the optimal rate for ‖F̂n − F‖∞ is 1/

√
n. Next, we will remove the log-factor in (7.11) by more

advanced technique.
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Let F = {1C , C ⊂ X} be the set of binary value functions defined on a probability space (X ,P).
For any f, g ∈ F , we define

‖f − g‖L2(P) =

(∫
X

(f(x)− g(x))2dP(x)

)1/2

.

Lemma 7.12 There is a numerical constant c > 0 such that

N(F , ‖ · ‖L2(P), ε) ≤
(c
ε

)cv
for ε < 1.

where v is the VC dimension of F .

The proof of Lemma 7.12 relies on the following lemma.

Lemma 7.13 Let f1, · · · , fn be functions on (X ,P). If

‖fi‖∞ ≤ 1, ‖fi − fj‖L2(P) > ε for all i 6= j,

then there exists m � ε−4 log n points x1, · · · , xm such that

1

m

m∑
k=1

|fi(xk)− fj(xk)|2 > ε2/4 for all i 6= j. (7.12)

Proof: The proof of this lemma uses a very interesting probabilistic argument: we first choose
m points randomly and then show (7.12) holds with high probability. Then there must exist such
m deterministic points. More precisely, let X1, · · · , Xm ∼ P be i.i.d samples. The application of
Hoeffding inequality implies that

P

[
1

m

m∑
k=1

(
|fi(Xk)− fj(Xk)|2 − E

[
|fi(Xk)− fj(Xk)|2

])
≤ −t

]
≤ exp

(
−mt

2

2

)
.

Noting that

E

[
1

m

m∑
k=1

|fi(Xk)− fj(Xk)|2
]

= E
[
|fi(Xk)− fj(Xk)|2

]
= ‖fi − fj‖2L2(P) > ε2,

we have

P

[
1

m

m∑
k=1

|fi(Xk)− fj(Xk)|2 ≤
ε2

4

]
≤ exp

(
−mε

4

4

)
.

Now a union bound gives

P

[
1

m

m∑
k=1

|fi(Xk)− fj(Xk)|2 ≥
ε2

4
for all i 6= j

]
≥ 1− n2exp

(
−mε

4

4

)
> 0

provided m � ε−4 log n.
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Proof: [of Lemma 7.12] Let f1, · · · , fn be an maximal ε-packing of (F , ‖ · ‖L2(P)). By Lemma 7.13,
there exist m � ε−4 log n points x1, · · · , xm such that

1

m

m∑
k=1

|fi(xk)− fj(xk)|2 > ε2/4 for all i 6= j.

Thus, letting Fn = {f1, · · · , fn},

n = |{(fi(x1), · · · , fi(xm)) : fi ∈ Fn}| .

Note that the VC dimension of Fn is less or equal than the VC dimension of F . By the Sauer-Shelah
lemma we have

n ≤
(em
v

)v
≤
(
cε−4 log n

v

)v
,

and the claim follows after some simple calculus.

Theorem 7.14 (Glivenko-Cantelli) We have E
[
‖F̂n − F‖∞

]
. 1√

n
.

Proof: For fixed (x1, · · · , xn), let

Zf =
1√
n

n∑
k=1

εkf(xk).

Noting that Zf − Zg = 1√
n

∑n
k=1 εk(f(xk) − g(xk)) is 1

n

∑n
k=1(f(xk) − g(xk))

2-sub-Gaussian (see

Lecture 1). Thus, if we define the metric

d(f, g) =

√√√√ 1

n

n∑
k=1

(f(xk)− g(xk))2,

then Zf − Zg is d(f, g)2-sub-Gaussian. Let F̃ = {F , 0}, namely we add a 0 function to F . Note

that we still have v(F̃) = 1 (check this!). Thus, Lemma 7.12 implies that

N(F̃ , d, ε) ≤
(c
ε

)c
, for ε < 1,

where c > 0 is a universal constant. Moreover, it is easy to see that d(f, g) ≤ 1 for any f, g ∈ F̃ ,
and thus diam(F) ≤ 1. By the Dudley integral (also noting Remark 6.4) we have

Eε

[
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
k=1

εkf(xk)

∣∣∣∣∣
]

= Eε

[
sup
f∈F̃

∣∣∣∣∣ 1√
n

n∑
k=1

εkf(xk)− 0

∣∣∣∣∣
]

.
∫ 1

0

√
logN(F̃ , d, ε)dε

= O(1),

where O(1) means a constant. Thus,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− E [f(X)]

∣∣∣∣∣
]
. EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]
.

1√
n
.

The proof is now complete.
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7.4 Statistical Learning

In this section, we study the generalization error analysis problem in statistical learning, as intro-
duced at the beginning of this lecture. For simplicity, consider the classification problem where
Y = T (X) and T is a fixed Boolean function on X . Moreover, we consider the case where L is
squared loss,

L(h(Xk), Yk) = |h(Xk)− Yk|2 = |h(Xk)− T (Xk)|2.

Therefore, by (7.3), we have

R(ĥ∗n)−R(h∗) ≤ 2 sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣

= 2 sup
h∈H

∣∣∣∣∣ 1n
n∑
k=1

(
|h(Xk)− T (Xk)|2 − E

[
|h(Xk)− T (Xk)|2

])∣∣∣∣∣
= 2 sup

f∈F

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ ,
where f = |h−T |2, F = {|h−T |2, h ∈ H}. Assume H is a set of Boolean functions: {1C , C ⊂ X}.
We have the following result.

Lemma 7.15 For any set of points (x1, · · · , xn), define d(f, g) =
√

1
n

∑n
k=1(f(xk)− g(xk))2. Then

N(F , d, ε) ≤ N(H, d, ε).

Proof: Since both h and T are Boolean functions, so does h− T . Thus,

|h− T |2 = |h− T |.

It follows that

||h1 − T |2 − |h2 − T |2| = ||h1 − T | − |h2 − T || ≤ |h1 − h2| = |h1 − h2|2.

for any h1, h2 ∈ H. Therefore,

d(h1 − T, h2 − T ) =

√√√√ 1

n

n∑
k=1

|h1(xk)− T (xk)|2 − |h2(xk)− T (xk)|2

≤

√√√√ 1

n

n∑
k=1

|h1(xk)− h2(xk)|2

= d(h1, h2),

from which N(F , d, ε) ≤ N(H, d, ε) can be easily established.

Theorem 7.16 Under the previous assumptions, we have

E
[
R(ĥ∗n)−R(h∗)

]
.

√
v(H)

n
,

where v(H) denotes the VC dimension of H.
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Proof: We have

E
[
R(ĥ∗n)−R(h∗)

]
. E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− E [f(X)]

∣∣∣∣∣
]

. EXEε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]

.
1√
n
· EX

[∫ 1

0

√
logN(F , d, ε)dε

]
≤ 1√

n
· EX

[∫ 1

0

√
logN(H, d, ε)dε

]
.

√
v(H)

n
,

where the last line follows from Lemma 7.12.

Reading Materials

[1] Martin Wainwright, High-dimensional statistics – A non-asymptotic viewpoint, Chapter 4.

[2] Ramon van Handel, Probability in High Dimension, Chapters 5.2, 7.1, 7.2.

[3] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, Foundations of Machine Learn-
ing, Chapter 3.

13


