
High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 6: Lower Bound of Suprema for Gaussian Process

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/04/07)

Recap and motivation: In the last few lectures, we have studied the upper bound for E [supt∈T Xt],
especially by Dudley inequality:

E
[
sup
t∈T

Xt

]
.
∫ ∞
0

√
logN(T, d, ε)dε,

where d is defined through the increments of the process. In a reverse direction, we can interpret
this result as measuring the complexity of a set via a random process, with Radamacher complexity
and Gaussian complexity as special examples.

In this section we study the lower bound of E [supt∈T Xt]. It is clear that we cannot expect
to obtain a nontrivial lower bound at the level of generality. For example, even in the case of
finite maxima, we have seen that the additional assumption of independence is needed to obtain a
meaningful lower bound. Otherwise, an extreme example would be E [supt∈T Xt] withXt = X for all
t. Therefore, in this lecture we will restrict our attention to the Gaussian process, whose additional
properties enable us to establish lower bound of E [supt∈T Xt] for certain random processes via
Gaussian comparison theorems. As before, we will always assume Xt is centered (i.e., E [Xt] = 0
for all t, unless stated otherwise).

Definition 6.1 (Gaussian process) The random process {Xt}t∈T is called a centered Gaussian
process if the random variables {Xt1 , · · · , Xtn} are centered and jointly Gaussian1 for all n ≥ 1 and
t1, · · · , tn ∈ T .

Recall that for the centered Gaussian random variable, its sub-Gaussian parameter is equal to
its variance. Thus, if we define

d(t, s) =
√
E [(Xt −Xs)2] = ‖Xt −Xs‖L2 . (6.1)

Then, a Gaussian process is a sub-Gaussian process on (T, d). Note d is usually referred to the
canonical metric defined on T and it is indeed a pseudo-metric but it satisfies the triangle inequality.
Gaussian process has additional properties that makes it easy to work with.

Agenda:

• Gaussian interpolation

• Gaussian comparison inequality

• Sudakov minoration inequality

• A short remark

1It is equivalent to that any linear combination of {Xt1 , · · · , Xtn} is Gaussian. Note that it is possible to construct
a set of random variables that are individually Gaussian but whose joint distribution is not Gaussian.
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6.1 Gaussian Interpolation

The proof of the Gaussian comparison inequality in the next section relies on a technique known
as Gaussian interpolation. First we have the multidimensional version of the Gaussian integration
by parts.

Lemma 6.2 (Gaussian integration by parts) Let X ∼ N (0,Σ), where Σ is an n×n variance
matrix. Then,

E [Xif(X)] =

n∑
j=1

ΣijE
[
∂f

∂xj
(X)

]
.

Proof: In the special 1-d case when X ∼ N (0, 1), the claim of the lemma reduces to

E [Xf(X)] = E
[
f ′(X)

]
,

which follows immediately after we apply the integration by part to

E
[
f ′(X)

]
=

1√
2π

∫ ∞
−∞

f ′(x)e−
x2

2 dx.

In general, first note that letting Z ∼ N (0, In), then X has the same distribution as Σ1/2Z. Thus,

E [Xif(X)] =

n∑
k=1

Σ
1/2
ik E

[
Zkf(Σ1/2Z)

]
=

n∑
k=1

Σ
1/2
ik E [Zkg(Z)] ,

where g(z) = f(Σ1/2z) and hence

∂g

∂zk
(z) =

n∑
j=1

Σ
1/2
jk

∂f

∂xj
(Σ1/2z).

Since the result for the special 1-d case implies (noting Zk are independent)

E [Zkg(Z)] = E
[
∂g

∂zk
(Z)

]
=

n∑
j=1

Σ
1/2
jk E

[
∂f

∂xj
(Σ1/2Z)

]
,

we have

E [Xif(X)] =

n∑
k=1

Σ
1/2
ik E [Zkg(Z)]

=

n∑
k=1

Σ
1/2
ik

n∑
j=1

Σ
1/2
jk E

[
∂f

∂xj
(Σ1/2Z)

]

=

n∑
j=1

(
n∑
k=1

Σ
1/2
ik Σ

1/2
jk

)
E
[
∂f

∂xj
(Σ1/2Z)

]

=
n∑
j=1

ΣijE
[
∂f

∂xj
(X)

]
,

as desired.
Using the Gaussian integration by parts property, we are ready to present and prove the Gaus-

sian interpolation result.
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Lemma 6.3 Let X ∼ N (0,ΣX) and Y ∼ N (0,ΣY ) be two independent n-dimensional Gaussian
vectors. Define

Z(t) =
√
tX +

√
1− tY, t ∈ [0, 1].

Then for every smooth function f we have

d

dt
E [f(Z(t))] =

1

2

n∑
i,j=1

(
ΣX
ij − ΣY

ij

)
E
[
∂2f

∂zi∂zj
(Z(t))

]
.

Proof: By the chain rule we have

d

dt
E [f(Z(t))] =

n∑
i=1

E
[
∂f

∂zi
(Z(t))

dZi
dt

]

=
1

2

n∑
i=1

E
[
∂f

∂zi
(Z(t))

Xi√
t

]
− 1

2

n∑
i=1

E
[
∂f

∂zi
(Z(t))

Yi√
1− t

]
.

Considering the first term, as X and Y are independent, we can apply Lemma 6.2 to X (con-
ditioned on Y ). More precisely, letting g(X) = g(X1, · · · , Xn) = f(

√
tX1 +

√
1− tY1, · · · ,

√
tXn +√

1− tYn) = f(Z(t)), then

∂g

∂xi
(X) =

√
t
∂f

∂zi
(Z(t)) and

∂2g

∂xi∂xj
(X) = t

∂2f

∂zi∂zj
(Z(t)).

It follows that

n∑
i=1

E
[
∂f

∂zi
(Z(t))

Xi√
t

]
=

1

t

n∑
i=1

E
[
∂g

∂xi
(X)Xi

]

=
1

t

n∑
i=1

n∑
j=1

ΣX
ijE
[

∂2g

∂xi∂xj
(X)

]

=
n∑
i=1

n∑
j=1

ΣX
ijE
[
∂2f

∂zi∂zj
(X)

]
.

Since the second term can be bounded similarly, the proof is complete.

6.2 Gaussian Comparison Inequality

Theorem 6.4 (Sudakov-Fernique inequality) Let {Xt}t∈T and {Yt}t∈T be two mean zero sep-
arable Gaussian processes. Suppose

E
[
|Xt −Xs|2

]
≥ E

[
|Yt − Ys|2

]
for all t, s ∈ T.

Then,

E
[
sup
t∈T

Xt

]
≥ E

[
sup
t∈T

Yt

]
.
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This theorem is very intuitive: if {Xt}t∈T has larger pairwise variance than {Yk}t∈T , then E [supt∈T Xt] ≥
E [supt∈T Yt]. It is enough to establish the theorem for two Gaussian vectors X ∼ N (0,ΣX) and
Y ∼ N (0,ΣY ) . Moreover, we can assume X and Y are independent; otherwise we can consider
an independent copy of one of them.

Proof: For any β > 0 define

fβ(x) =
1

β
log

n∑
k=1

eβxk .

It is not hard to see that (check this!)

max
k=1,··· ,n

xk ≤ fβ(x) ≤ max
k=1,··· ,n

xk +
log n

β
.

Thus, fβ(x)→ maxk=1,··· ,n xk as β →∞. Moreover,

∂f

∂zk
=

eβxk∑n
k=1 e

βxk
=: pk(x),

∂2f

∂zk∂zj
= β (δkjpk(x)− pk(x)pj(x)) ,

where δkj equals 1 if k = j and equals 0 otherwise. It follows from Lemma 6.3 that

d

dt
E [fβ(Z(t))] =

1

2

n∑
k,j=1

(
ΣX
kj − ΣY

kj

)
E
[
∂2fβ
∂zk∂zj

(Z(t))

]

=
β

2

n∑
k=1

(
ΣX
kk − ΣY

kk

)
E [pk(Z(t))(1− pk(Z(t)))]− β

2

∑
k 6=j

(
ΣX
kj − ΣY

kj

)
E [pk(Z(t))pj(Z(t))] .

Noting that 1− pk(x) =
∑

j 6=k pj(x), we have

n∑
k=1

(
ΣX
kk − ΣY

kk

)
E [pk(Z(t))(1− pk(Z(t)))] =

∑
k 6=j

(
ΣX
kk − ΣY

kk

)
E [pk(Z(t))pj(Z(t))]

=
∑
k 6=j

(
ΣX
jj − ΣY

jj

)
E [pk(Z(t))pj(Z(t))] .

It follows that

d

dt
E [fβ(Z(t))] =

∑
k 6=j

β

4

(
ΣX
kk − 2ΣX

kj + ΣX
jj

)
E [pk(Z(t))pj(Z(t))]−

∑
k 6=j

β

4

(
ΣY
kk − 2ΣY

kj + ΣY
jj

)
E [pk(Z(t))pj(Z(t))]

=
β

4

∑
k 6=j

(
E
[
|Xk −Xj |2

]
− E

[
|Yk − Yj |2

])
E [pk(Z(t))pj(Z(t))]

≥ 0,

where in the last line we have used the assumption. Thus fβ(Z(t)) is increasing in t, yielding

E [fβ(X)] ≥ E [fβ(Y )] .
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Letting β →∞ concludes the proof.
There are also other types of Gaussian comparison inequalities such as the Slepian inequality or

the Gordon inequality, which can be proved similarly, see for example [3]. The Gaussian comparison
inequalities have many interesting applications. Here we give an example before presenting its
application on the lower bound for the expectation of suprema of the Gaussian process.

Example 6.5 (Spectral norm of Gaussian matrices) Let W ∈ Rm×n be a random matrix
with i.i.d N (0, 1) entries. By the the finite approximation bound in Lecture 4, we have

E [‖W‖2] ≤ C(
√
m+

√
n).

Next we can show that the bound can be sharpened to

E [‖W‖2] ≤
√
m+

√
n

by the Sudakov-Fernique inequality2. We still begin with the variational form for ‖W‖2,

‖W‖2 = sup
u∈Bm

2 ,v∈Bn
2

uTWv =: sup
u∈Bm

2 ,v∈Bn
2

Yuv.

We have

E
[
|Yuv − Yts|2

]
= E

∑
ij

Wkj(uivj − tisj)

2
=
∑
ij

(uivj − tisj)2

= ‖uvT − tsT ‖2F
≤ ‖u− t‖22 + ‖v − s‖22.

If we construct another Gaussian process as follows,

Xuv = 〈g, u〉+ 〈h, v〉 , g ∼ N (0, Im), h ∼ N (0, In).

it is easy to see that E
[
|Xuv −Xts|2

]
= ‖u− t‖22 + ‖v − s‖22. Thus, applying the Sudakov-Fernique

inequality yields

E

[
sup

u∈Bm
2 ,v∈Bn

2

uTWv

]
≤ E

[
sup

u∈Bm
2 ,v∈Bn

2

〈g, u〉+ 〈h, v〉

]

= E

[
sup
u∈Bm

2

〈g, u〉

]
+ E

[
sup
v∈Bn

2

〈h, v〉

]
= G(Bm2 ) + G(Bn2 )

≤
√
m+

√
n.

It is worth noting that this example is a special case of the Chevet theorem which considers the
problem on a compact subsets of the unit spheres.

2However, note that the finite approximation bound works for all the general sub-Gaussian matrices, not only the
standard Gaussian matrices.
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6.3 Sudakov Minoration Inequality

Theorem 6.6 (Sudakov minoration inequality) Let {Xt}t∈T be a centered Gaussian process.
Then

E
[
sup
t∈T

Xt

]
& sup

ε>0
ε
√

logN(T, d, ε),

where d is the canonical metric defined in (6.1).

Proof: For any ε > 0, let P be ε-packing of T under the canonical metric with the packing
number P (T, d, ε). Let X = {Xt}t∈P and let Y = {Yt}t∈P be a vector of length P (T, d, ε) with i.i.d

N (0, ε
2

2 ) variables. Then,

E
[
|Xt −Xs|2

]
= d(t, s)2 ≥ ε2 = E

[
|Yt − Ys|2

]
.

Thus the Sudakov-Fernique inequality yields

E
[
sup
t∈P

Xt

]
≥ E

[
sup
t∈P

Yt

]
� ε
√

logP (T, d, ε) ≥ ε
√

logN(T, d, ε),

where the last inequality follows from the relationship N(T, d, ε) ≤ P (T, d, ε).
Sudakov minoration inequality can be used in two different ways: converting lower bound of

covering number into lower bound of the suprema of Gaussian process, and converting upper bound
of the suprema of Gaussian process into upper bound of covering number.

Example 6.7 (Lower bound on suprema of i.i.d Gauss) We have already shown in Lecture 4
that

E
[

max
k=1,··· ,n

gk

]
&
√

log n

for i.i.d standard Gaussian random variables gk. The lower bound actually can also be established
via Sudakov minoration inequality. First note that

max
k=1,··· ,n

gk = max
t∈T
〈g, t〉,

where T = {e1, · · · , en} and g ∈ N (0, In). Since for sufficiently small ε, N(T, ‖ · ‖2, ε) = n, it
follows immediately that E [maxk=1,··· ,n gk] &

√
log n.

Example 6.8 (Gaussian width of unit 2-norm ball Bd2) In Lecture 4, we have seen that

G(Bd2) = E

[
sup
t∈Bd

2

〈g, t〉

]
�
√
d,

where the lower bound is obtained via the comparison with the corresponding Rademacher complex-
ity. Since 〈g, t〉 is a Gaussian process with the canonical metric given by

d(t, s) =
√

E [| 〈g, t− s〉 |2] = ‖t− s‖2,

we can also use the Sudakov minoration inequality to get the lower bound,

G(Bd2) & ε
√

logN(Bd2, ‖ · ‖2, ε) � ε
√
d log

1

ε
�
√
d

after choosing a proper ε.
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Example 6.9 (Lower bound on spectral norm of Gaussian matrices) In Example 6.5, we
have seen that

E [‖W‖2] ≤
√
m+

√
n

for an m × n Gaussian random matrix. The Sudakov minoration inequality can be used to show
that this bound is sharp in terms of the scaling. Recall that

‖W‖2 = sup
u∈Bm

2 ,v∈Bn
2

uTWv =: sup
u∈Bm

2 ,v∈Bn
2

Yuv.

The application of the Sudakov minoration inequality yields that (complete the details!)

E [‖W‖2] & ε
√

logN(Bm2 ⊗ Bn2 , ‖ · ‖F , ε)

& ε
√

log (N(Bm2 , ‖ · ‖2, ε) ·N(Bn2 , ‖ · ‖2, ε))

� ε
√

(m+ n) log
1

ε

&
√
m+

√
n

after choosing ε properly.

Example 6.10 (Metric entropy of unit 1-norm ball Bd1 under the Euclidean distance) We
have already seen that

G(Bd1) = E

[
sup
t∈Bd

1

〈g, t〉

]
�
√

log d.

Together with the Sudakov minoration inequality, we have

logN(Bd1, ‖ · ‖2, ε) .
1

ε2
log d.

Up to constant, this result matches the bound for the covering number of a convex hull of a finite
set due to Maurey. Noting that

logN(Bd2, ‖ · ‖2, ε) � d log
1

ε
,

we can see in a different way that the unit 1-norm ball is much smaller than the unit 2-norm ball.

6.4 A Short Remark

Combining the Sudakov minoration inequality with the Dudley inequality/integral, we have for the
Gaussian process {Xt}t∈T

sup
k

2−k
√

logN(T, d, 2−k) . E
[
sup
t∈T

Xt

]
.
∑
k

2−k
√

logN(T, d, 2−k).
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In some situations, the upper and lower bounds are not as far apart as may appear at first sight
because the term 2−k

√
logN(T, d, 2−k) behaves like a geometric sequence so that their sum is of

the same order as the largest one (for example, consider Example 6.8). However, there are also
cases where there is indeed a gap between these two bounds. It turns out the generic chaining
bound is tight for Gaussian processes, i.e.,

E
[
sup
t∈T

Xt

]
� γ(T, d),

see Section 3 of Lecture 6 for the definition of γ(T, d). This is the notable Talagrand majorizing
measure theorem. We will omit the details, see for example [2] and [3]. For stationary Gaussian
process, Dudley integral is also tight.

Reading Materials

[1] Martin Wainwright, High Dimensional Statistics – A non-asymptotic viewpoint, Chapter 5.4.

[2] Ramon van Handel, Probability in High Dimension, Chapter 6.1.

[3] Roman Vershynin, High-Dimensional Probability: An introduction with applications in data
science, Chapter 7.

8


