
High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 5: Expectation of Suprema: Chaining

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/04/15)

Recap and motivation: Recall from the last lecture that we have established the following bound
based on (one-step) finite approximation:

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

(
Xt −Xπ(t)

)]
+ E

[
sup
t∈T

Xπ(t)

]
, (5.1)

where π(t) is the projection of t onto a covering set of T , denoted N . Assume T has infinite number
of points. Then the first term on the right side of (5.1) still has infinite number of terms. Though
for some problems (i.e., computing the expectation of the spectral norm of a random matrix), it
can be shown that E

[
supt∈T

(
Xt −Xπ(t)

)]
is a small proportion of E [supt∈T Xt], in general it is

still not very convenient to process the first term. In order to mitigate this, we may continue to
approximate T by a finer covering set, denoted N ′, and obtain

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

(
Xt −Xπ′(t)

)]
+ E

[
sup
t∈T

(
Xπ′(t) −Xπ(t)

)]
+ E

[
sup
t∈T

Xπ(t)

]
,

where π′(t) denotes the projection of t onto N ′. Of course, we can iterate this process and the term
with infinite number of points is expected to diminish to zero as the approximation becomes finer
and finer. The chaining argument applies this mechanism from the coarsest covering (with only
one point), which yields a more tractable bound for E [supt∈T Xt].

Agenda:

• The chaining method

• Examples

• Generic chaining

5.1 The Chaining Method

Definition 5.1 (Sub-Gaussian process) A random process {Xt}t∈T defined on a metric space
(T, d) is called sub-Gaussian if E [Xt] = 0 and Xt −Xs is d(t, s)2-sub-Gaussian for all t, s ∈ T .

Since the variations within the random process is determined by the metric space (T, d), it is
expected to exploit the structure of (T, d) to bound E [suptXt]. The chaining method will be our
focus of this lecture. It provides one way to exploit the structure of (T, d). (A more refined way
(see [2] for example, equivalent to generic chaining which is presented in the last section but not
required, may improve the chaining bound in some situations.)

Example 5.2 Consider Xt = 〈g, t〉, where g ∈ N (0, Id) and t ∈ T ⊂ Rd. Since Xt−Xs = 〈g, t− s〉
is a ‖t− s‖22-Gaussian, {Xt}t∈T is certainly a sub-Gaussian process.
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Theorem 5.3 (Discrete Dudley inequality) Let {Xt}t∈T be a separable sub-Gaussian process
on the metric space (T, d). Then1,

E
[
sup
t∈T

Xt

]
.
∑
k∈Z

2−k
√

logN(T, d, 2−k).

Figure 5.1: Illustration for chaining.

Proof: Without loss of generality we may assume |T | < ∞ since the separability of {Xt}t∈T
implies that E [supt∈T Xt] = lim

n→∞
E
[
supt∈Tn Xt

]
where Tn in an increasing finite subset of T .

Let k0 ∈ Z such that 2−k0 > diam(T ). Then any singleton T0 = {t0} is an 2−k0-net of T . For
k > k0, let Tk be the 2−k-net of T with covering number N(T, d, 2−k). Moreover, since |T | < ∞,
there exists a sufficiently large K such that TK = T , see Figure 5.1. Thus, we have

Xt = Xt0 +

K∑
k=k0+1

(
Xπk(t) −Xπk−1(t)

)
,

where πk(t) maps t to the nearest point in Tk. It follows that

E
[
sup
t∈T

Xt

]
≤

K∑
k=k0+1

E
[
sup
t∈T

(
Xπk(t) −Xπk−1(t)

)]
. (5.2)

First note that there are at most

|Tk||Tk−1| ≤ |Tk|2 = N(T, d, 2−k)2

terms in supt∈T
(
Xπk(t) −Xπk−1(t)

)
. Moreover, since

d(πk(t), πk−1(t)) ≤ d(πk(t), t) + d(t, πk−1(t)) ≤ 3× 2−k,

1The negative k in the sum denotes the approximation in the coarse (or large) scale with a small metric entropy. If
diam(T ) <∞, there exists a sufficiently small k0 such that for all k ≤ k0, N(T, d, 2k) = 1 and thus logN(T, d, 2k) = 0.
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and Xπk(t) −Xπk−1(t) is d(πk(t), πk−1(t))
2-sub-Gaussian by the assumption, we have

E
[
sup
t∈T

(
Xπk(t) −Xπk−1(t)

)]
. 2−k

√
logN(T, d, 2−k).

Inserting this into (5.2) completes the proof.

Remark 5.4 A careful reader may find out that what we have actually established in Theorem 5.3
is that

E
[
sup
t∈T
|Xt −Xt0 |

]
.
∑
k∈Z

2−k
√

logN(T, d, 2−k).

This observation will be useful in one of the examples in the sequel.

Discrete Dudley inequality bounds E [supt∈T Xt] by a sum of (geometric structured) covering
scales times the corresponding square root of metric entropies. The result can be written in an
integral form since the sum can be viewed as a Riemann sum approximation to a certain integral.

Theorem 5.5 (Dudley integral) Let {Xt}t∈T be a separable sub-Gaussian process on the metric
space (T, d). Then

E
[
sup
t∈T

Xt

]
.
∫ ∞
0

√
logN(T, d, ε)dε.

Proof: The claim follows from∑
k∈Z

2−k
√

logN(T, d, 2−k) = 2
∑
k∈Z

∫ 2−k

2−(k+1)

√
logN(T, d, 2−k)dε

≤ 2
∑
k∈Z

∫ 2−k

2−(k+1)

√
logN(T, d, ε)dε

= 2

∫ ∞
0

√
logN(T, d, ε)dε,

which completes the proof.

Remark 5.6 In the proof we have shown that∑
k∈Z

2−k
√

logN(T, d, 2−k) ≤ 2

∫ ∞
0

√
logN(T, d, ε)dε.

Actually, we can also establish that

∑
k∈Z

2−k
√

logN(T, d, 2−k) =
∑
k∈Z

∫ 2−(k−1)

2−k

√
logN(T, d, 2−k)dε ≥

∫ ∞
0

√
logN(T, d, ε)dε.

Thus nothing is lost in expressing the chaining bound as an integral rather than a sum, up to a
constant factor.
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Remark 5.7 . It is worthing that we always have N(T, d, ε) = 1 when ε ≥ diam(T ). Thus, it is
sufficient to take integral up to ε = diam(T ).

Remark 5.8 It is not always the case that the bound by the Dudley integral is better than the one
step discretization bound. Note that N(T, d, ε) may approaches ∞ as ε approaches 0. Then the
Dudley integral in an indefinite integral at the point 0. If

√
logN(T, d, ε) diverges very fast, the

Dudley integral can be infinite. In this case the one step-discretization would still give a nontrivial
bound even when the covering number is not integrable. Thus, sometimes, it is useful to combine the
chaining method and the one step-discretization method to obtain a bound which mixes the Dudley
integral (from a point strictly larger than zero) and the uniform one step-discretization bound, see
for example Problem 5.11 in [2].

5.2 Examples

5.2.1 Gaussian Complexity of Bd2
Recall that the Gaussian complexity of Bd2 is given by

G(Bd2) = E

[
sup
t∈Bd

2

〈g, t〉

]
, g ∼ N (0, Id).

Letting Xt = 〈g, t〉, we known that Xt − Xs is ‖t − s‖22-sub-Gaussian. Moreover, the covering
number of (Bd2, ‖ · ‖2) at a scale 0 < ε < 1 can be bounded by (3/ε)d (see Lecture 4). Thus, by the
Dudley integral, we have

G(Bd2) .
∫ 1

0

√
logN(Bd2, ‖ · ‖2, ε)dε

=
√
d

∫ 1

0

√
log

3

ε
dε .

√
d,

which captures the correct order of G(Bd2), see Lecture 4.

5.2.2 A Failure Example

Let T =
{

ek√
1+log k

: k = 1, · · · , n
}

, where ek is the k-th canonical vector. Consider the Gaussian

complexity of T ,

G(T ) = E
[
sup
t∈T
〈g, t〉

]
, g ∼ N (0, Id).

Note that G(T ) can be explicitly written as

G(T ) = E

[
sup

k=1,··· ,n

gk√
1 + log k

]
.

Thus, it can be shown that there exists a universal constant C > 0 such that for all n,

G(T ) ≤ E

[
sup

k=1,··· ,n

|gk|√
1 + log k

]
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=

∫ ∞
0

P

[
sup

k=1,··· ,n

|gk|√
1 + log k

≥ t

]
dt

=

∫ a

0
P

[
sup

k=1,··· ,n

|gk|√
1 + log k

≥ t

]
dt+

∫ ∞
a

P

[
sup

k=1,··· ,n

|gk|√
1 + log k

≥ t

]
dt

≤ a+
n∑
k=1

∫ ∞
a

P
[

|gk|√
1 + log k

≥ t
]
dt

≤ C (complete this step by choosing a properly!) .

However, we will show that the bound from the Dudley integral diverges as n → ∞. Here, we
consider the case n = 22

L
. First note that the first m vectors in T is 1/

√
logm separated. Thus,

the packing number satisfies
P (T, ‖ · ‖2, 1/

√
logm) ≥ m.

It follows that ∫ ∞
0

√
logN(T, ‖ · ‖2, ε)dε

≥
∫ 1

2
√

log(n)

0

√
logN(T, ‖ · ‖2, ε)dε

+

∫ 1

2

√
log(n1/2)
1

2
√

log(n)

√
logN(T, ‖ · ‖2, ε)dε

+ · · · · · ·

+

∫ 1

2

√
log

(
n1/2L

)
1

2

√
log

(
n1/2L−1

)
√

logN(T, ‖ · ‖2, ε)dε

≥
∫ 1

2
√

log(n)

0

√
logN

(
T, ‖ · ‖2,

1

2
√

log n

)
dε

+

∫ 1

2

√
log(n1/2)
1

2
√

log(n)

√√√√√logN

T, ‖ · ‖2, 1

2
√

log
(
n1/2

)
dε

+ · · · · · ·

+

∫ 1

2

√
log

(
n1/2L

)
1

2

√
log

(
n1/2L−1

)

√√√√√logN

T, ‖ · ‖2, 1

2
√

log
(
n1/2L

)
dε

≥
∫ 1

2
√

log(n)

0

√
logP

(
T, ‖ · ‖2,

1√
log n

)
dε
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+

∫ 1

2

√
log(n1/2)
1

2
√

log(n)

√√√√√logP

T, ‖ · ‖2, 1√
log
(
n1/2

)
dε

+ · · · · · ·

+

∫ 1

2

√
log

(
n1/2L

)
1

2

√
log

(
n1/2L−1

)

√√√√√logP

T, ‖ · ‖2, 1√
log
(
n1/2L

)
dε

≥ 1

2
+

1

2

(
1− 1√

2

)
L→∞ as L→∞,

where the third inequality follows from the relationship between covering number and packing
number, and the last one uses the note that the first m vectors in T is 1/

√
logm separated.

Thus, the Dudley inequality/integral is not able to capture the right bound for the Gaussian
complexity of T in this example. Next we will present a method that works well for this example.

5.3 Generic Chaining

Before introducing generic chaining, we first reformulate the Dudley inequality into an equivalent
form. To this end, we need to give the definition of admissible sequence. Let {Tk}∞k=1 be a sequence
of subsets of T . If

|T0| = 1, |Tk| ≤ 22
k
, k = 1, 2, · · · (5.3)

{Tk}∞k=1 is called an admissible sequence.

Lemma 5.9 We have ∫ ∞
0

√
logN(T, d, ε)dε � inf

{Tk}∞k=0

∞∑
k=0

2k/2 sup
t∈T

d(t, Tk), (5.4)

where the infimum is taken over all the admissible sequence satisfying (5.3).

Proof: First note that the righthand side (5.4) is equivalent to

∞∑
k=0

2k/2 inf
Tk

sup
t∈T

d(t, Tk).

Then letting ek(T ) = infTk supt∈T d(t, Tk), one can easily see that

e0(T ) = inf{ε : N(T, d, ε) = 1}, ek(T ) = inf{ε : N(T, d, ε) ≤ 22
k} for k ≥ 1.

Therefore, for ε < ek(T ), N(T, d, ε) ≥ 22
k

+ 1. It follows that∫ ek(T )

ek+1(T )

√
logN(T, d, ε)dε & 2k/2(ek(T )− ek+1(T )).
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Consequently, ∫ e0(T )

0

√
logN(T, d, ε)dε &

∞∑
k=0

2k/2(ek(T )− ek+1(T ))

=
∞∑
k=0

2k/2ek(T )−
∞∑
k=1

2(k−1)/2ek(T )

≥
(

1− 1√
2

) ∞∑
k=0

2k/2ek(T ),

which completes the proof of one direction.
For the other direction, we have∫ ∞

0

√
logN(T, d, ε)dε =

∫ e0(T )

0

√
logN(T, d, ε)dε

=
∞∑
k=0

∫ ek(T )

ek+1(T )

√
logN(T, d, ε)dε

.
∞∑
k=0

2(k+1)/2(ek(T )− ek+1(T ))

.
∞∑
k=0

2kek(T ).

Now the proof is complete.

Remark 5.10 The above lemma means that if we choose the sequence of covering numbers properly,
fixing the sequence of the covering numbers and computing the related covering errors is equivalent
to fixing the sequence of covering errors and computing the covering numbers in Dudley inequality.
The derivation above also reveals why it requires |Tk| ≤ 22

k
in the admissible sequence. Basically, we

would like to have a matching lower and upper bound for Dudley integral in the form of the righthand
of (5.4). Alternatively, if we want

√
logN(T, d, ε) to be integrable towards 0,

√
logN(T, d, ε) is at

most of order 1/
√
ε (other smaller than 1 power also be fine). Then, N(T, d, ε) ≈ e1/ε = e2

k
when

ε = 2−k.

The generic chaining will allow us to pull the supremum outside the sum and thus leads to a
potentially smaller bound.

Theorem 5.11 (Generic chaining) Let {Xt}t∈T be a separable sub-Gaussian process on the met-
ric space (T, d). Then

E
[
sup
t∈T

Xt

]
. γ(T, d) := inf

{Tk}∞k=0

sup
t∈T

∞∑
k=0

2k/2d(t, Tk), (5.5)

where the infimum is taken over all the admissible sequences.
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Proof: As before, we can still assume |T | <∞. Thus, it holds that

Xt −Xt0 =
K∑
k=1

(
Xπk(t) −Xπk−1

(t)
)
,

where πk(t) maps t to the closest point in Tk. The overall goal is to show that

P
[
sup
t∈T
|Xt −Xt0 | & uγ(T, d)

]
. exp

(
−u2/2

)
for u ≥ c,

where c > 0 is an absolute constant. The claim will then follow immediately.
To this end, we will consider each term in the chaining sum and then take a uniform bound.

Because |Xπk(t) −Xπk−1(t)| is d(πk(t), πk−1(t))
2-sub-Gaussian, we have

P
[
|Xπk(t) −Xπk−1(t)| ≥ Cu2k/2d(πk(t), πk−1(t))

]
≤ 2exp

(
−u22k

)
, (5.6)

where C > 0 is an absolute and fixed constant. Let Ωu be the event such that

|Xπk(t) −Xπk−1(t)| ≤ Cu2k/2d(πk(t), πk−1(t)) for all t ∈ T and k.

Since there are at most |Tk||Tk−1| terms in |Xπ(t) −Xπk−1(t)|, we have

P [Ωc
u] ≤ 2

∑
k≥1

22
k+1

exp
(
−u22k

)
.

Note that whenever Ωu occurs, we have2

sup
t∈T
|Xt −Xt0 | ≤ Cu sup

t∈T

∞∑
k=1

2k/2d(πk(t), πk−1(t)).

Consequently,

P

[
sup
t∈T
|Xt −Xt0 | ≥ Cu sup

t∈T

∞∑
k=1

2k/2d(πk(t), πk−1(t))

]
≤ 2

∑
k≥1

22
k+1

exp
(
−u22k

)
Noting that d(πk(t), πk−1(t)) ≤ d(t, Tk) + d(t, Tk−1), we have

P
[
sup
t∈T
|Xt −Xt0 | & uγ(T, d)

]
≤ 2

∑
k≥1

22
k+1

exp
(
−u22k

)
.

Thus, it only remains to bound
∑

k≥1 22
k+1

exp
(
−u22k

)
. Noting that

u22k ≥ u2/2 + u22k−1 ≥ u2/2 + 2k+1

for u ≥ 2, one can easily obtain that
∑

k≥1 22
k+1

exp
(
−u22k

)
. exp

(
−u2/2

)
.

It is worth noting that the tail bound version of the Dudley integral and the generic chaining
can also be established, see for example [2] or [3]. The generic chaining bound is not as convenient
to use as the Dudley integral since constructing a good admissible sequence is not always easy.
However, the difference between the generic chaining bound and the Dudley integral can look
minor, but sometimes it is real. To see this, we revisit the failure example for the Dudley integral
in Section 5.2.2.

2Basically, the argument here tensorize well without first triggering the sup in the first place.
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Example 5.12 (Revisit of example in Section 5.2.2) Consider the case n = 22
L

. For no-
tational convenience, we let tk = ek/

√
1 + log k. For any admissible sequence {Tk} satisfying

|Tk| ≤ 22
k
, it is easy to show that

sup
t∈T

d(t, Tk) & 1/

√
1 + log 22k � 2−k/2.

Thus, the bound obtained from Dudley integral is about

L∑
k=1

O(1) = O(L)→∞.

In contrast, to apply generic chaining, we can construct an admissible sequence as follows:

T0 = {tn}, Tk = {t2, · · · , t22k , tn}, k = 1, · · · , L− 1.

Then give any t ∈ T , there exists a K such that the index of t satisfies 22
K
< i(t) ≤ 22

K+1
. It

follows that

∞∑
k=0

2k/2d(t, Tk) =

K∑
k=0

2k/2d(t, Tk) .
K∑
k=0

2(k−K)/2 = O(1).

Here tn is included in Tk in order for d(t, Tk) � 2−K/2, k ≤ K (independent of k). Because t is
arbitrary, we can conclude that the generic chaining can capture the right magnitude in this special
example.
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