
High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 4: Expectation of Suprema: Finite Approximation

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/03/31)

Recap and Motivation: As already mentioned previously, estimating the suprema of the form

sup
t∈T

Xt (4.1)

arises in a wide range of contexts. Two representative examples are:

• The spectral norm of a random matrix W ∈ Rm×n can be expressed as

‖W‖2 = sup
‖u‖2=1,‖v‖2=1

u>Wv.

• The generalization error analysis in empirical risk minimization finally reduces to

sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ ,
where F is a set of functions. This is typically referred to as Uniform Law of Large Numbers.

While the concentration of (4.1) around its mean for typical applications can be established by the
concentration inequalities discussed in the last three lectures, computing the expectation

E
[
sup
t∈T

Xt

]
(4.2)

is by no means easy. This will be the focus in the next few lectures. We will first study the general
form (4.2), and then give a particular treatment of this problem later for uniform law of large
numbers. Unless otherwise stated, it is always assumed that E [Xt] = 0.

Agenda:

• Finite maxima

• Gaussian complexity and Rademacher complexity

• Covering and packing

• Finite approximation bound
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4.1 Finite Maxima

The problem here is to bound

E
[

max
k=1,··· ,n

Xk

]
,

where Xk is σ2-sub-Gaussian. Maybe the most naive approach is to bound the supremum by a
sum,

E
[

max
k=1,··· ,n

Xk

]
≤ E

[
n∑
k=1

|Xk|

]
≤ n max

k=1,··· ,n
E [|Xk|] . nσ,

where the last inequality follows from the σ2-sub-Gaussian property of each Xk. Of course,
bounding a maximum by a sum is an exceedingly crude idea. We may consider a transform of
maxk=1,··· ,nXk such that the gap between supreme and sum is seemingly not so large after the
transform. Next we attempt to provide a bound based on the higher order moments,

E
[

max
k=1,··· ,n

Xk

]
≤
((

E
[

max
k=1,··· ,n

|Xk|
])p)1/p

≤
(
E
[

max
k=1,··· ,n

|Xk|p
])1/p

≤
(
n max
k=1,··· ,n

E [|Xk|p]
)1/p

. n1/pσ
√
p.

Minimizing the righthand side with respect to p yields that

E
[

max
k=1,··· ,n

Xk

]
. σ

√
log n.

Of course we can apply the moment generating function to estimate the maximum as in the devel-
opment of the tail bound by the Chernoff method. More precisely, we have the following lemma.

Lemma 4.1 Let {Xk}nk=1 be σ2-sub-Gaussian random variables. Then

E
[

max
k=1,··· ,n

Xk

]
≤ σ

√
2 log n.

Proof: We have

E
[
exp

(
λmax

k
Xk

)]
= E

[
max
k

exp (λXk)

]
≤
∑
k

E [exp (λXk)]

≤ n exp(σ2λ2/2) = exp(log(n) + σ2λ2/2).

Thus, the application of Jensen’s inequality yields that

exp

(
E
[
λmax

k
Xk

])
≤ E

[
exp

(
λmax

k
Xk

)]
≤ exp(log(n) + σ2λ2/2),
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which leads to

E
[
max
k

Xk

]
≤ log(n)

λ
+
σ2λ

2
.

Taking λ =
√

2 log(n)/σ concludes the proof.
Note that the above result does not require that Xk, k = 1, · · · , n are independent to each other.

It is evident that we cannot obtain a general lower bound, for example, letting X1 = · · · = Xn.
Nevertheless, the upper bound in the last lemma is indeed tight for independent Gaussian random
variables. More details on lower bound will be provided in the sequel for suprema of random
Gaussian processes.

Lemma 4.2 Let {Xk}nk=1 be i.i.d N (0, σ2) random variables. Then there exists a small absolute
constant c > 0 such that

E
[

max
k=1,··· ,n

Xk

]
≥ c · σ

√
log n.

Proof: First we have

E
[

max
k=1,··· ,n

Xk

]
= E

[
max

{
max

k=1,··· ,n
Xk, 0

}]
+ E

[
min

{
max

k=1,··· ,n
Xk, 0

}]
≥ E

[
max

{
max

k=1,··· ,n
Xk, 0

}]
+ E [min {X1, 0}]

=

∫ ∞
0

P
[

max
k=1,··· ,n

Xk > t

]
dt+ E [min {X1, 0}]

≥ δ · P
[

max
k=1,··· ,n

Xk > δ

]
− E [|X1|]

= δ (1− (P [X1 ≤ δ])n)− E [|X1|]
= δ (1− (1− P [X1 > δ])n)− E [|X1|] .

Note that

P [X1 > δ] =
1√
2πσ

∫ ∞
δ

e−
x2

2σ2 dx

=
1√
2πσ

∫ ∞
δ

e−
(y+δ)2

2σ2 dy

≥ e−δ
2/σ2

c1

for some numerical constant c1 > 0. Choosing δ = σ
√

log(n/c1) yields that P [X1 > δ] ≥ 1/n.
Consequently,

E
[

max
k=1,··· ,n

Xk

]
≥ σ

√
log(n/c1)(1− (1− 1/n)n)− σ

≥ (1− 1/e)
√

log(n/c1)σ − σ,

which concludes the proof for sufficiently large n.
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4.2 Rademacher Complexity and Gaussian Complexity

This section studies E [supt∈T Xt] associated with Rademacher complexity and Gaussian complexity.
Recall that give a set T ⊂ Rd, the Rademacher complexity is defined as

R(T ) = E
[
sup
t∈T
〈ε, t〉

]
, ε = (ε1, · · · , εd),

while the Gaussian complexity of T is defined as

G(T ) = E
[
sup
t∈T
〈g, t〉

]
, g ∼ N (0, Id),

Lemma 4.3 We have

R(T ) . G(T ) . R(T )
√

log d.

Proof: Lower bound. First we have

R(T ) = Eε

[
sup
t∈T

d∑
k=1

εktk

]
=

√
π

2
Eε

[
sup
t∈T

Eg

[
d∑

k=1

εk|gk|tk

]]

≤
√
π

2
Eε

[
Eg

[
sup
t∈T

d∑
k=1

εk|gk|tk

]]

=

√
π

2
E

[
sup
t∈T

n∑
k=1

gktk

]

=

√
π

2
G(T ),

where the third follows from the fact that εk|gk| has the same distribution with gk.
Upper bound. To prove the upper bound, first note that the function

f(a1, · · · , ad) := E

[
sup
t∈T

d∑
k=1

εktkak

]

is a convex function. Thus, the maximum of f over the region {(a1, · · · , ad) : |ak| ≤ 1, k = 1, · · · , d}
must be achieved at the boundary. Then it follows that

E

[
sup
t∈T

d∑
k=1

εktkak

]
≤ E

[
sup
t∈T

d∑
k=1

εktk

]
for all |ak| ≤ 1, k = 1, · · · , d.

Consequently,

G(T ) = Eg

[
Eε

[
sup
t∈T

d∑
k=1

εk|gk|tk

]]

= Eg

[
max
k
|gk| · Eε

[
sup
t∈T

d∑
k=1

εk
|gk|

maxk |gk|
tk

]]
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≤ Eg
[
max
k
|gk| · R(T )

]
� R(T )

√
log d,

as claimed.

Example 4.4 (Unit 2-norm ball Bd2) Let Bd2 = {t ∈ Rd : ‖t‖2 ≤ 1}. Then,

R(T ) = E

[
sup
‖t‖2≤1

〈ε, t〉

]
= E [‖ε‖2] =

√
d.

The same argument shows that

G(T ) = E [‖g‖2] ≤
√
E
[
‖g‖22

]
=
√
d.

Together with Lemma 4.3, we can conclude that G(Bd2) �
√
d. Therefore, the Rademacher complexity

and the Gaussian complexity of Bd2 are essentially the same.

Example 4.5 (Unit 1-norm ball Bd1) Let Bd1 = {t ∈ Rd : ‖t‖1 ≤ 1}. Then,

R(T ) = E

[
sup
‖t‖1≤1

〈ε, t〉

]
= E [‖ε‖∞] = 1,

while

G(T ) = E

[
sup
‖t‖1≤1

〈g, t〉

]
= E [‖g‖∞] �

√
log d.

Therefore, in this case, the Rademacher complexity and Gaussian complexity differ by the order√
log d. By Lemma 4.3, this difference turns out to be the worst possible.

4.3 Covering and Packing

For general random variables Xt and infinite number of elements in T , the first step can be made
by approximating the supremum with a maximum of finite number of random variables. It should
be not surprising that overall the bound for (4.2) should rely on the complexity or richness of the
index set T . This section studies two closely related ways to measure the complexity of T , which
indeed shows how to approximate T with a set of finite number of elements to achieve certain
accuracy.

Definition 4.6 (ε-net and covering number) Let (T, d) be a metric space. A set N ⊂ T is
called an ε-net of (T, d) if for every t ∈ T , there exists a π(t) ∈ N such that d(t, π(t)) ≤ ε. The
covering number of (T, d), denoted N(T, d, ε), is the smallest possible cardinality of an ε-net of
(T, d). That is,

N(T, d, ε) = inf{|N | : N is a ε-net of (T, d)}.
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Figure 4.1: Covering (right) and packing (left) [2].

Note that N is a ε-net of T if and only if (see right of Figure 4.1)

T ⊂
⋃
t∈N

B(t, ε), where B(t, ε) = {s ∈ T : d(t, s) ≤ ε}.

The covering number N(T, d, ε) can be viewed as a measure of the complexity of T at the scale
ε: The more complex T is, the more number of points we need to approximate it up to a certain
precision. In addition, the logarithm of the covering number logN(T, d, ε) is often called the metric
entropy of T as it is equivalent to the number of bits needed to encode every points of T up to a
prescribed precision ε.

Example 4.7 Consider the interval T = [−1, 1] with the metric d(t, t′) = |t− t′|. If we let

N = {tk = −1 + 2(k − 1)ε, k = 1, · · · , kmax}

for the kmax such that tkmax ≤ 1. it is not hard to see that N is an ε-net of T . Thus, we have

N(T, d, ε) ≤ 1

ε
+ 1.

Exercise 4.8 Generalize the above result to the d-dimensional cube T = [−1, 1]d with d(t, t′) =

‖t− t′‖∞ and show that N(T, d, ε) ≤
(
1
ε + 1

)d
.

Definition 4.9 (ε-packing and packing number) Let (T, d) be a metric space. A set P ⊂ T
is called an ε-packing of (T, d) if for every t, t′ ∈ P and t 6= t′, we have d(t, t′) > ε. The packing
number of (T, d), denoted P (T, d, ε), is the largest possible cardinality of an ε-packing of (T, d).
That is,

P (T, d, ε) = sup{|P | : P is a ε-packing of (T, d)}.
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The key idea, which was already hinted at above, is that the notion of packing is dual to the
notion of covering (i.e., the typical primal-dual relationship between inf and sup), as given in the
following lemma. This means that we can use covering and packing interchangeably. It is often the
case that estimating one of them is easier than estimating the other in the applications.

Lemma 4.10 (Dual or equivalence between covering and packing) For any ε > 0,

P (T, d, 2ε) ≤ N(T, d, ε) ≤ P (T, d, ε).

Proof: Upper bound. Let P be a maximal ε-packing of (T, d). Then it is not hard to see
that P is also a ε-net of (T, d); otherwise it will violates the maximality. The upper bound follows
immediately.

Lower bound. Let P = {xi} be an 2ε-packing of (T, d) and let N = {yj} be a ε-net of (T, d).
It can be argued that each closed B(yj , ε) ball can only contain one xi due to the 2ε-separability of
{xi}. Since each xi must be contained in one B(yj , ε), we must have |P | ≤ |N |. The lower bound
follows due to the arbitrary of P and N .

The following lemma studies the covering of unit-norm balls in Rd. The proof is based on a
clever technique known as a volume argument.

Lemma 4.11 Let ‖ · ‖ be a norm defined in Rd (e.g., 1-norm, 2-norm or infinity-norm). Let Bd
be a unit ‖ · ‖ ball, i.e., Bd = {t ∈ Rd : ‖t‖ ≤ 1}. Then(

1

ε

)d
≤ N(Bd, ‖ · ‖, ε) ≤

(
1 +

2

ε

)d
.

Proof: Lower bound. Let N = N(Bd, ‖ · ‖, ε). We know that B can be covered with N balls of
radius ε (see right of Figure 4.1 for an illustration under the 2-norm). Thus,

vol(Bd) ≤ Nvol(εBd).

Noting that vol(εBd) = εdvol(Bd), the lower bound follows.
Upper bound. For the upper bound we consider P = P (Bd, ‖ · ‖, ε). Let {xi} ⊂ Bd be the

ε-packing of Bd. Construct P balls B(xi, ε/2). Then we have⋃
xi

B(xi, ε/2) ⊂ Bd +
ε

2
Bd =

(
1 +

ε

2

)
Bd,

see the left of Figure 4.1. Thus, it follows that

P · vol
(ε

2
Bd
)
≤ vol

((
1 +

ε

2

)
Bd
)
.

It follows that P ≤
(
1 + 2

ε

)d
, and the upper bound follows by noting Lemma 4.10.

The result in Lemma 4.11 for the unit 2-norm ball Bd2 will be very useful for studying the
spectral norm of a random matrix. It follows that the metric entropy of Bd2 satisfies

logN(Bd2, ‖ · ‖2, ε) ∼ d log

(
1

ε

)
,

which scales linearly with respect to d. For some spaces (of functions), the metric entropy scales
exponentially with respect to d, hence suffering from the curse of dimensionality.

Remark 4.12 Result and argument in Lemma 4.11 can be generalized to any set T in Rd, see [3].
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4.4 Finite Approximation Bound

At last, we consider the general case E [supt∈T Xt] and present a simple bound via one step of finite
approximation. More precisely, the idea is approximating E [supt∈T Xt] by a finite maximum over
a ε-net of T , together with the approximation error.

Theorem 4.13 Assume Xt is σ2-sub-Gaussian for every t ∈ T . Then,

E
[
sup
t∈T

Xt

]
≤ inf

ε>0

{
E
[
sup
t∈T

(
Xt −Xπ(t)

)]
+
√

2σ2 logN(T, d, ε)

}
.

Proof: Let ε > 0 and N be a ε-net of (T, d). For any t, let π(t) be the point in N such that
d(t, π(t)) ≤ ε. Then,

sup
t∈T

Xt = sup
t∈T

(
Xt −Xπ(t) +Xπ(t)

)
≤ sup

t∈T

(
Xt −Xπ(t)

)
+ sup

t∈T
Xπ(t).

Taking the expectation on both sides and using the upper bound for the supremum of a finite
number of sub-Gaussian random variables yields

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

(
Xt −Xπ(t)

)]
+
√

2σ2 logN(T, d, ε).

Noting that the first term indeed relies on ε since d(t, π(t)) ≤ ε, taking the infimum over all ε > 0
concludes the proof.

There is a trade-off in the bound of Theorem 4.13. When ε decreases, the first term will
potentially become smaller since Xt becomes closer to Xπ(t), but the second term increases as the
covering number increases under a decreasing precision.

Example 4.14 (Maximum singular value of sub-Gaussian random matrix) Let W ∈ Rm×n
be a random matrix with i.i.d σ2-sub-Gaussian entries. We would like to estimate

E [‖W‖2] .

By the variational formula of the spectral norm,

‖W‖2 = sup
u∈Bm2 ,v∈Bn2

uTWv,

it is equivalent to bound E

[
sup

u∈Bm2 ,v∈Bn2
uTWv

]
. Firstly note that uTWv is σ2-sub-Gaussian for

every u ∈ Bm2 and v ∈ Bn2 (verify this!). Let M be an ε-net of Bm2 and N be an ε-net of Bn2 . By
Theorem 4.13, we have

E [‖W‖2] ≤ E

[
sup

u∈Bm2 ,v∈Bn2

(
uTWv − π(u)TWπ(v)

)]
+
√

2σ2 log |M ||N |, ∀ε > 0.

• By Lemma 4.11, we can choose M ≤ (1 + 2/ε)m and N ≤ (1 + 2/ε)n.
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• Because for any u ∈ Bm2 , v ∈ Bn2 ,

|uTWv − π(u)TWπ(v)| ≤ |(u− π(u))TWv|+ |π(u)TW (v − π(v))|
≤ 2ε‖W‖2,

we have E
[
supu∈Bm2 ,v∈Bn2

(
uTWv − π(u)TWπ(v)

)]
≤ 2εE [‖W‖2].

Combining all them together yields

E [‖W‖2] ≤
1

1− 2ε

√
2σ2(m+ n) log(3/ε), ∀ε > 0.

Taking ε to be a small constant (e.g., ε = 1/4) yields that

E [‖W‖2] . σ(
√
m+

√
n).

As can be seen in the next lecture, this crude bound already captures the correct (tight) order of
magnitude of the matrix norm.

A careful reader may find out that what have used in the above analysis is essentially the result

‖W‖2 = sup
u∈Bm2 ,v∈Bn2

uTWv ≤ 1

1− 2ε
sup

u∈M,v∈N
uTWv.

Moreover, because the remaining term is of the same order with the target to bound but with a
smaller factor, i.e.,

E

[
sup

u∈Bm2 ,v∈Bn2

(
uTWv − π(u)TWπ(v)

)]
≤ 2εE [‖W‖2] ,

optimal bound (in order) can be achieved for this case. But sometimes, the bound for the remaining
term obtained via invoking the Lipschitz property is inefficient, so the finite approximate scheme
only yields sub-optimal bound. An example will be presented when discussing uniform law of large
numbers.

Reading Materials

[1] Martin Wainwright, High Dimensional Statistics – A non-asymptotic viewpoint, Chapters 5.1,
5.2 and 5.3.

[2] Ramon van Handel, Probability in High Dimension, Chapter 5.1, 5.2.

[3] Roman Vershynin, High-Dimensional Probability: An introduction with applications in data
science, Chapter 4.2, 4.4.
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