
High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 2: Herbst Argument and Entropy Method

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/03/19)

Recap and Motivation: In Lecture 1 we have discussed the sub-Gaussian and sub-exponential
distributions and the corresponding tail bounds for sums of independent random variables and
functions satisfying the bounded different property. Our next goal is to extend the concentration
results to other interesting functions. We will restrict our attention to the sub-Gaussian type tails
while some of the techniques may also be applicable for establishing the Bernstein type bound.

Define the log-moment (or cumulant) generating function of a random variable X as

ψ(λ) = logE [exp (λ(X − E [X]))] . (2.1)

The sub-Gaussian property can be equivalently expressed as

ψ(λ) . λ2ν2 for all λ ∈ R. (2.2)

By the Chernoff bound we know that the sub-Gaussian property immediately implies a Gaussian
tail bound (they are indeed equivalent). Moreover, the sub-Gaussian property can be established
for sums of independent random variables and functions obeying the bounded difference inequality.
As already seen, the proofs rely essentially on the tensorization property (or a martingale difference
sequence variant) of the log-moment generating function defining the sub-Gaussian property, i.e.,

logE

[
exp

(
λ

n∑
k=1

(Xk − E [Xk])

)]
≤

n∑
k=1

logE [exp (λ (Xk − E [Xk]))] .

However, for more complicated functions f(X1, · · · , Xn) arising from the applications than
sums of independent random variables, the above tensorization property hardly holds. That is, the
sub-Gaussian property in terms of the (log-)moment generating function overall does not tensorize
well. To mitigate this issue, one idea is to introduce an alternative formulation of the sub-Gaussian
property that behaves well under tensorization.

In this lecture we will study the sub-Gaussian property based on certain entropy function and
establish a concentration inequalities for more general f . To motivate this, let us recap the calculus
method that is used in the proof of the sub-Gaussian property for bounded random variables. First,
a simple calculation yields that

ψ(0) = 0 and ψ′(0) = 0.

Thus in order to establish the sub-Gaussian property (2.2), it suffices to show that

ψ′′(λ) . ν2 for all λ ∈ R.

Noting that (2.2) is equivalent to

ψ(λ)/λ . λν2 for all λ ∈ R,
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it also suffices to show that

d

dλ
(ψ(λ)/λ) . ν2. (2.3)

Though this is a trivial reformulation, it will lead to a more powerful method for proving concen-
tration inequalities. Moreover, it turns out that (2.3) can be related to a type of entropy function
that tensorizes well.

Agenda:

• Entropy

• Herbst argument and tensorization

• Modified log-Sobolev inequality and entropy method

• Gaussian concentration

2.1 Entropy

Definition 2.1 The entropy of a positive random variable Z, denoted Ent [Z], is defined as

Ent [Z] = E [φ(Z)]− φ(E [Z]) = E [Z logZ]− E [Z] logE [Z],

where φ(t) = t log t.

Remark 2.2 Note that the entropy defined here should not be confused with the Shannon entropy
which is roughly about on average how many bits are needed to store a random variable.

Exercise 2.3 Show that φ(t) = t log t is a convex function and thus Ent [Z] ≥ 0.

Remark 2.4 Given any convex function φ(t), we can define the Bregman distance (divergence) as

D(y‖x) = φ(y)− φ(x)− φ′(x)(y − x).

With this notion, it is easy to see that

Ent [Z] = E [D(Z‖E [Z])] (2.4)

for φ(t) = t log t. That is, Ent [Z] is the average Bregman distance between Z and E [Z]. Moreover,
by simple calculus, one has

Ent [Z] = inf
t>0

E [D(Z‖t)] . (2.5)

Note that the definition of entropy in (2.4) is overall similar to that of variance,

Var [Z] = E
[
(Z − E [Z])2

]
,

but with a different metric. Thus, it is reasonable that entropy can tensorize well like variance.
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Example 2.5 (Entropy of exponential of Gaussian) Let X ∼ N (0, σ2). We have

Ent
[
eλX

]
= E

[
eλX log

(
eλX

)]
− E

[
eλX

]
log
(
E
[
eλX

])
= E

[
λXeλX

]
− E

[
eλX

]
log

(
e
λ2σ2

2

)
=

1

2
λ2σ2E

[
eλX

]
for all λ ∈ R,

where we can use dE
[
eλX

]
/dλ = E

[
XeλX

]
to calculate the first term in the second line.

Exercise 2.6 Show that Ent
[
eλ(X+c)

]
= eλc · Ent

[
eλX

]
for any c ∈ R.

Lemma 2.7 (Entropy of exponential and MGF) Let ψ(λ) be the log-moment generating func-
tion defined in (2.1). We have

Ent
[
eλX

]
E [eλX ]

= λψ′(λ)− ψ(λ).

Proof: The result follows from the definition and E
[
XeλX

]
= d

dλE
[
eλX

]
. Note that X is not

necessarily mean zero though it is centered when defining ψ(λ).

Example 2.8 (Entropy of exponential of bounded random variable) Let X be mean zero
and supported on [a, b]. By Lemma 2.7, we have

Ent
[
eλX

]
E [eλX ]

= λψ′(λ)− ψ(λ) = [λψ′(λ)− ψ(λ)]− [0 · ψ′(0)− ψ(0)]

=

∫ λ

0
ξψ′′(ξ)dξ

≤ (b− a)2

4

∫ λ

0
ξdξ

=
λ2(b− a)2

8
,

where the inequality follows from the bound for ψ′′(ξ), see Example 1.13 of Lecture 1. Thus,

Ent
[
eλX

]
≤ λ2(b− a)2

8
E
[
eλX

]
.

Lemma 2.9 (Variational formula of entropy) Let Z ≥ 0 be a nonnegative random variable.
Then,

Ent [Z] = sup
{
E [ZX] : X is a random variable satisfying E

[
eX
]

= 1
}

= sup{E [Z (log Y − logE [Y ]) : Y ≥ 0]}.

Proof: Note if letting X = log (Z/E [Z]), then it is not hard to show that E
[
eX
]

= 1 and
E [ZX] = Ent [Z]. Thus, it suffices to show that

Ent [Z]− E [ZX] ≥ 0
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for all X satisfying E
[
eX
]

= 1. Note that Ent [Z]− E [ZX] can be expressed as

Ent [Z]− E [ZX] = E
[(
e−XZlog

(
e−XZ

))
eX
]
− E

[(
e−XZ

)
eX
]

logE
[(
e−XZ

)
eX
]
.

Since E
[
eX
]

= 1, if we define the new probability dQ = eXdP where P is the probability distribution
defining Z and X, then Ent [Z] − E [ZX] is indeed the entropy of e−XZ under the probability
distribution, i.e.,

Ent [Z]− E [ZX] = EntQ
[
e−XZ

]
≥ 0, (2.6)

where the inequality follows from the nonnegative property of entropy.
The second equality follows simply from the fact that

E
[
eX
]

= 1⇔ ∃ Y ≥ 0 such that X = log Y − logE [Y ] .

The proof is complete now.

Lemma 2.10 (Exchangeable bound for entropy) Let Z and Z ′ be two i.i.d positive random
variables. Then,

Ent [Z] ≤ 1

2
E
[
(Z − Z ′)(logZ − logZ ′)

]
.

In particular, for two i.i.d random variables X and X ′,

Ent
[
eX
]
≤ 1

2
E
[
(eX − eX′)(X −X ′)

]
Proof: By the definition of entropy, one has

Ent [Z] = E [Z logZ]− E [Z] logE [Z]

= E [Z logZ]− E [Z] logE
[
Z ′
]

≤ E [Z logZ]− E [Z]E
[
logZ ′

]
= E

[
Z(logZ − logZ ′)

]
.

Similarly, one has Ent [Z ′] ≤ E [Z ′(logZ ′ − logZ)] . Combining the them together yields the first
result and the second result follows immediately from the first one.

2.2 Herbst Argument and Tensorization

2.2.1 Herbst Argument

The examples above reveal a connection between Ent
[
eλX

]
and E

[
eλX

]
for certain sub-Gaussian

random variables. It turns out this relation can be used to define the sub-Gaussian property, which
follows from the Herbst argument.

Theorem 2.11 (Herbst) Suppose that

Ent
[
eλX

]
≤ λ2ν2

2
E
[
eλX

]
for all λ ≥ 0. (2.7)

Then X satisfies the bound

ψ(λ) = logE [exp (λ(X − E [X]))] ≤ 1

2
λ2ν2 for all λ ≥ 0. (2.8)
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Proof: The proof is indeed based on the argument sketched around (2.3). First note that

lim
λ→0

ψ(λ)

λ
= 0. (check this!)

Consequently,

ψ(λ)

λ
=

∫ λ

0

d

dξ

(
ψ(ξ)

ξ

)
dξ.

Moreover, condition (2.7) can be used to provide an upper bound for d
dξ

(
ψ(ξ)
ξ

)
since there holds

d

dξ

(
ψ(ξ)

ξ

)
=

1

ξ2
(
ξψ′(ξ)− ψ(ξ)

)
=

1

ξ2
Ent

[
eξX
]

E [eξX ]
≤ 1

ξ2
ξ2ν2

2
=
ν2

2
for all ξ ≥ 0,

where the second equality follows from Lemma 2.7 and the inequality follows from (2.7). Inserting
this bound into the integral yields that

ψ(λ)

λ
≤ λν2

2
⇒ ψ(λ) ≤ λ2ν2

2
,

as claimed.

Remark 2.12 The fact Ent
[
eλ(X+c)

]
= eλc · Ent

[
eλX

]
implies that if X satisfies (2.7), so does

X+c. That is why we do not need to center the random variable in (2.7), but are still able to obtain
a result for a centered random variable in (2.8). Indeed, the random variables we are interested are
in the form of f(X1, · · · , Xn) which are generally not mean zero.

The following proposition follows immediately from Theorem 2.11, showing the sub-Gaussian
property can be defined based on the relation between Ent

[
eλX

]
and E

[
eλX

]
.

Proposition 2.13 (sub-Gaussian property via Entropy) Suppose

Ent
[
eλX

]
≤ λ2ν2

2
E
[
eλX

]
for all λ ∈ R. (2.9)

Then, X is sub-Gassuain with parameter ν.

Exercise 2.14 Prove Proposition 2.13. (Hint: apply Theorem 2.11 to −X and −λ in the case
when (2.9) holds for λ ≤ 0.)

Remark 2.15 The above proposition provides a new perspective for sub-Gaussian distribution
through the comparison of entropy of exponential and MGF, which enables us to avoid bound-
ing MGF directly. This is very useful in establishing sub-Gaussian property of nonlinear functions
since entropy tensorizes well which allows the comparison of entropy of exponential and MGF in a
coordinate way.
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2.2.2 Tensorization of Entropy

The entropy has a nice tensorization property for functions of independent variables which enables
us to bound the entropy of random variables in the form of g(X1, · · · , Xn) in a coordinate-wise
manner. To present this property, let us first introduce a new notation. Let X1, · · · , Xn be
independent random variables. Given g : X n → [0,∞), we define Entk [g(X1, · · · , Xn)] as

Entk [g(X1, · · · , Xn)] = Ent [g(x1, · · · , xk−1, Xk, xk+1, · · · , xn)]|x1=X1,··· ,xk−1=Xk−1,xk+1=Xk+1,··· ,xn=Xn .

In other words, Entk [g(X1, · · · , Xn)] is the entropy of g(X1, · · · , Xn) with respect to the variable
to Xk only, while the others keep fixed. Note that Entk [g(X1, · · · , Xn)] is still a random variable,
a function of X1, · · · , Xk−1, Xk+1, · · · , Xn.

Theorem 2.16 (Tensorization of entropy) We have

Ent [g(X1, · · · , Xn)] ≤ E

[
n∑
k=1

Entk [g(X1, · · · , Xn)]

]
,

where X1, · · · , Xn are independent.

As already noted, entropy can be viewed as another expected quantity to reflect fluctuations of
random variables, and it is natural to anticipate entropy tensorizes similarly as variance (see Lec-
ture 1 for tensorization of variance). This property allows us to deduce a bound for functions of
independent random variables from bounds for functions of each individual random variable, thus is
very helpful for studying high dimensional problems. If we think Entk [·] as the way of quantifying
the random in the k-th mode (when average out the other random variables), the theorem implies
that the randomness of the joint distribution is less than or equal to the sum of the randomness
of all the modes. Compared to MGF, this property implies that for any form of g, we
can control the entropy of g(X1, · · · , Xn) by considering the entropy of each coordinate,
which means entropy tensorizes better than MGF. The proof of this theorem is based on
the variational form of entropy.

Proof: [Proof of Theorem 2.16] Let Z = g(X1, · · · , Xn) and define

Uk = logE [Z|X1, · · · , Xk]− logE [Z|X1, · · · , Xk−1] .

Then we have

Ent [Z] = E [Z (log (Z)− logE [Z])] =

n∑
k=1

E [ZUk] .

Thus, it suffices to show that E [ZUk|X1, · · · , Xk−1, Xk+1, · · · , Xn] ≤ Entk [Z]. To this end, let us
fix

X1, · · · , Xk−1, Xk+1, · · · , Xn

and consider

ZUk = Z (logE [Z|X1, · · · , Xk]− logE [Z|X1, · · · , Xk−1])

6



as a function of Xk. Noting that EXk [E [Z|X1, · · · , Xk]] = E [Z|X1, · · · , Xk−1] due to the indepen-
dence of all the Xk, the application of Lemma 2.9 with respect to Xk immediately that

E [ZUk|X1, · · · , Xk−1, Xk+1, · · · , Xn] ≤ Entk [Z],

which completes the proof.

Exercise 2.17 Verify that the equality in the tensorization property holds for

g(X1, · · · , Xn) = exp

(
λ

n∑
k=1

Xk

)
,

where X1, · · · , Xn are independent.

Example 2.18 (Bounded difference inequality revisited) In this example, we are going to
show that the bounded difference inequality can be proved in an alternative way based on the Herbst
argument (Theorem 2.11) and the tensorization property (Theorem 2.16). Recall that a function f
satisfies the bounded difference property if

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ Lk

with parameters (L1, · · · , Ln) over the range of the independent random variables X = (X1, · · · , Xn).
Thus, when fixing X1, · · · , Xk−1, Xk+1, · · · , Xn, f(X1, · · · , Xn) can be viewed as a bounded random
variable which locates in an interval of length at most Lk. Then it follows from Example 2.8 that

Entk

[
eλf(X1,··· ,Xn)

]
≤
λ2L2

k

8
Ek
[
eλf(X1,··· ,Xn)

]
,

where Ek [·] means taking expectation with respect to Xk only. Furthermore, letting g(X1, · · · , Xn) =
eλf(X1,··· ,Xn), the tensorization property implies that

Ent
[
eλf(X1,··· ,Xn)

]
≤

n∑
k=1

λ2L2
k

8
E
[
Ek
[
eλf(X1,··· ,Xn)

]]
= λ2

(
n∑
k=1

L2
k

8

)
E
[
eλf(X1,··· ,Xn)

]
.

Thus, by the Herbst argument, we know that f(X1, · · · , Xn) is sub-Gaussian with parameter ν2 =∑n
k=1 L

2
k

4 and the tail bound in the bounded difference inequality follows immediately.

2.3 Modified Log-Sobolev Inequality and Entropy Method

As demonstrated in the last example, in order to apply the Herbst argument and the tensorization
property to establish the sub-Gaussian tail, it remains to bound Entk

[
eλf(X1,··· ,Xn)

]
. In a more

general setting, this can be achieved by the modified log-Sobolev inequality1 (MLS), which is
the last piece of the entropy method. In a nutshell, MLS controls the entropy of eλf(X) by the
fluctuation/gradient of the function f .

1Overall, Sobolev inequalities are a family of inequalities which control the energy of functions by that of their
derivatives.
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Lemma 2.19 (MLS) Let f : X → R be a single variable function. Define

D−f(x) = f(x)− inf
z∈X

f(z).

Then for any λ ≥ 0 we have

Ent
[
eλf(X)

]
≤ E

[
φ
(
λD−f(X)

)
eλf(X)

]
≤ 1

2
E
[
|λD−f(X)|2eλf(X)

]
.

where φ(x) = e−x + x− 1.

Proof: By (2.5), we have

Ent [Z] = inf
t>0

E [Z logZ − Z log t− Z + t] .

Thus, letting Z = eλf(X) yields that

Ent
[
eλf(X)

]
= inf

t>0
E
[
λf(X)eλf(X) − eλf(X) log t− eλf(X) + t

]
≤ E

[
λf(X)eλf(X) − eλf(X)log

(
eλ infz f(z)

)
−eλf(X) + eλ infz f(z)

]
= E

[{
λf(X)− λ inf

z
f(z)− 1 + e−λf(X)+λ infz f(z)

}
eλf(X)

]
= E

[
φ
(
λD−f(X)

)
eλf(X)

]
.

The second inequality in the lemma simply follows from the fact φ(x) ≤ 1
2x

2 for x ≥ 0.
When f : X n → R is a multivariable function, applying the MLS conditionally to each

Entk
[
eλf(X1,··· ,Xn)

]
leads to the following theorem which can be viewed as an generalization of

the bounded difference inequality.

Theorem 2.20 (General bounded difference inequality) Let x = (x1, · · · , xn) and define

D−k f(x) = f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− inf
z∈X

f(x1, · · · , xk−1, z, xk+1, · · · , xn),

D+
k (x) = sup

z∈X
f(x1, · · · , xk−1, z, xk+1, · · · , xn)− f(x1, · · · , xk−1, xk, xk+1, · · · , xn).

Let X1, · · · , Xn be i.i.d random variables. If
∑n

k=1 |D
−
k f(x)|2 ≤ ν21 , then we have

P [f(X1, · · · , Xn) ≥ E [f(X1, · · · , Xn)] + t] ≤ exp

(
− t2

2ν21

)
Similarly, if

∑n
k=1 |D

+
k f(x)|2 ≤ ν22 , we have

P [f(X1, · · · , Xn) ≤ E [f(X1, · · · , Xn)]− t] ≤ exp

(
− t2

2ν22

)
.
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Proof: If we fix X1, · · · , Xk−1, Xk+1, · · · , Xn and consider f(X1, · · · , Xn) as a function of Xk,
the application of the MLS yields that

Entk

[
eλf(X1,··· ,Xn)

]
≤ 1

2
Ek
[
|λD−k f(X1, · · · , Xn)|2eλf(X1,··· ,Xn)

]
, λ ≥ 0.

By the tensorization property of entropy, we have

Ent
[
eλf(X1,··· ,Xn)

]
≤

n∑
k=1

E
[
Entk

[
eλf(X1,··· ,Xn)

]]
≤ 1

2
E

[
λ2

(
n∑
k=1

|D−k f(X1, · · · , Xn)|2
)
eλf(X1,··· ,Xn)

]

≤ λ2ν21
2

E
[
eλf(X1,··· ,Xn)

]
.

The upper tail bound follows immediately from the Herbst argument and the Chernoff method.
The lower tail bound can be established by considering −f .

Remark 2.21 Let

Dkf(x) = sup
z
f(x1, · · · , xk−1, z, xk+1, · · · , xn)− inf

z
f(x1, · · · , xk−1, z, xk+1, · · · , xn).

Note the tail bound obtained by the bounded difference inequality is of the order exp
(
−t2/

∑n
k=1 ‖Dkf(x)‖2∞

)
,

while the tail bound established here is of the order exp
(
−t2/‖

∑n
k=1 |Dkf(x)|2‖∞

)
. It is trivial that∥∥∑n

k=1 |Dkf(x)|2
∥∥
∞ ≤

∑n
k=1 ‖Dkf(x)‖2∞. Moreover, there are cases

∥∥∑n
k=1 |Dkf(x)|2

∥∥
∞ can be

sufficiently smaller than
∑n

k=1 ‖Dkf(x)‖2∞. Thus, the bounds of Theorem 2.20 are an improvement
over that in the bounded difference inequality. This is due to the fact entropy function tensorizes
better than the moment generating function.

Note that the upper and lower tail bounds here are essentially asymmetric: the upper bound is
controlled by

∑n
k=1 |D

−
k f(X)|2 while the lower bound is controlled by

∑n
k=1 |D

+
k f(X)|2. There are

problems where it is may be not clear how to bound one of them. However, if the function f satisfies
a stronger condition, it is still possible to obtain a two-sided tail bound from the single bound of∑n

k=1 |D
−
k f(X)|2. The machinery needed to prove such bounds are discussed in the next lecture.

From the general bounded difference inequality we can obtain the following proposition which
is relatively easier to manage. Recall that a function f : X n → R is separately convex if for each
i = 1, · · · , n, it is a convex function of its i-th coordinate while the rest of the coordinates are fixed.

Proposition 2.22 Let Xk, k = 1, · · · , n be independent random variables taking values in an in-
terval [a, b] and let f : [a, b]n → R be a separately convex function which also satisfies the Lipschitz
condition |f(x)− f(y)| ≤ L‖x− y‖2 for all x, y ∈ [a, b]n. Then, for all t ≥ 0,

P [f(X1, · · · , Xn) ≥ E [f(X1, · · · , Xn)] + t] ≤ exp

(
− t2

2L2(b− a)2

)
Proof: For ease of presentation, we assume the partial derivatives of f exist (Otherwise we can
adopt a standard approximation argument). Letting x′k be the random variable at which

inf
z
f(x1, · · · , xk−1, z, xk+1, · · · , xn)
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is achieved. Then it follows from the separately convex property of f that

D−k f(x) = f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− inf
z
f(x1, · · · , xk−1, z, xk+1, · · · , xn)

= f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)

≤ ∂kf(x)(xk − x′k). (use the separately convexity here)

It follows that

n∑
k=1

|D−k f(x)|2 ≤
n∑
k=1

∂2kf(x)(xk − x′k)2

≤
n∑
k=1

∂2kf(x)(b− a)2

= ‖∇f(x)‖22(b− a)2 ≤ L2(b− a)2,

where ‖∇f(x)‖2 ≤ L follows from the Lipschitz condition of f (check this!). The upper tail bound
then follows immediately from Theorem 2.20.

Remark 2.23 The lower tail cannot be established by considering −f since it is a concave function.

Example 2.24 (Sharper upper bounds on Rademacher complexity) Let us revisit Exam-
ple 1.43 of Lecture 1, which is about establishing an upper tail bound for

Z = sup
a∈A

[
n∑
k=1

akεk

]
,

where εk, k = 1, · · · , n are i.i.d Rademacher variables. Let

f(x1, · · · , xn) = sup
a∈A

[
n∑
k=1

akxk

]
, xk ∈ {1,−1}.

Since f is a supremum of a collection of linear function, it is a convex function and hence separately
convex. Moreover, it is not hard to show that (check this!)

|f(x1, · · · , xn)− f(x′1, · · · , x′n)| ≤ sup
a∈A
‖a‖2‖x− x′‖2,

where x = (x1, · · · , xn) and x′ = (x′1, · · · , x′n) That is, f is Lipschitz with parameter supa∈A ‖a‖2.
Thus, it follows from Proposition 2.22 that

P [f(ε1, · · · , εn) ≥ E [f(ε1, · · · , εn)] + t] ≤ exp

(
− t2

8 supa∈A ‖a‖22

)
.

Note that the quantity supa∈A ‖a‖22 (the squared Euclidean width of the set) used in the upper bound
here may be substantially than

∑n
k=1 supa∈A a

2
k established in Lecture 1.
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2.4 Gaussian concentration

Lastly, we present a classical concentration inequality of standard Gaussian random variables. The
proof of the inequality requires a type of Gaussian log-Sobolev inequality which is listed below
without proof. Interested readers are referred to Chapter 3.4 of [2] or Chapter 5.3 of [3] for a proof.

Lemma 2.25 (Gaussian log-Sobolev inequality) Let X1, · · · , Xn be a collection of n inde-
pendent standard Gaussian random variables, and let f : Rn → R be a continuously differentiable
function. Then

Ent
[
f2(X1, · · · , Xn)

]
≤ 2E

[
‖∇f(X1, · · · , Xn)‖22

]
.

To see why the above inequality is referred to as a type of log-Sobolev inequality, assume for
simplicity f is single variable function. Then by the chain rule we have

Ent
[
eλf(X)

]
≤ 1

2
E
[
|λf ′(X)|2eλf(X)

]
, for all λ ∈ R

which is analogous to the one give in Lemma 2.19, but with the discrete gradient replaced by the
calculus gradient. Similarly, when f is a multivariable function, we have (check this!)

Ent
[
eλf(X1,··· ,Xn)

]
≤ 1

2
E
[
‖λ∇f(X1, · · · , Xn)‖22 e

λf(X1,··· ,Xn)
]
, for all λ ∈ R (2.10)

Theorem 2.26 Let X1, · · · , Xn be a collection of n independent standard Gaussian random vari-
ables. Let f : Rn → R be a Lipschitz function with parameter L > 0. That is, for any x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖2.

Then f(X1, · · · , Xn)− E [f(X1, · · · , Xn)] is sub-Gaussian with parameter ν2 = L2, and hence

P [|f(X1, · · · , Xn)− E [f(X1, · · · , Xn)]| ≥ t] ≤ 2exp

(
− t2

2L2

)
.

Proof: We may assume f is differentiable (otherwise we can use an approximation argument).
Then ‖∇f(X1, · · · , Xn)‖2 is bounded by L (check this!). It follows from (2.10) that

Ent
[
eλf(X1,··· ,Xn)

]
≤ λ2L2

2
E
[
eλf(X1,··· ,Xn)

]
.

Then claim follows immediately by the Herbst argument.

Example 2.27 (Gaussian complexity) Let X1, · · · , Xn be an i.i.d sequence of N (0, 1) variables.
Given a set A ∈ Rn, define the random variable

Z = sup
a∈A

[
n∑
k=1

akXk

]
= sup

a∈A
〈a,X〉 ,

where X = (X1, · · · , Xn). The Gaussian complexity, denoted Gn(A), is defined as the expectation
of Z,

Gn(A) = E [Z] ,

11



which is another way to measure the complexity of a set (cf. the Rademacher complexity).
Define f(x1, · · · , xn) = supa∈A [

∑n
k=1 akxk] . Since f is a Lipschitz function with parameter

supa∈A ‖a‖2 (check this!), by the Gaussian concentration inequality we know that Z = supa∈A 〈a,X〉
is sub-Gaussian with parameter ν2 = supa∈A ‖a‖22.

Example 2.28 (Singular values of Gaussian random matrices) Let A ∈ Rn×n be a random
Gaussian matrix whose entries obey the i.i.d standard Gaussian distribution. Let σk(A) be the k-th
largest singular value of A. By Weyl’s theorem (this can be found in any standard linear algebra
textbook), we have

|σk(A)− σk(A′)| ≤ ‖A−A′‖F .

That is, σk(A) is Lipschitz with parameter 1. Therefore, we can conclude that σk(A) is sub-Gaussian
with parameter ν2 = 1.
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