
High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 1: Chernoff Method and Concentration Inequalities

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/02/25)

Motivation: Recall that our first goal is to establish the tail probability for

P [|f(X1, · · · , Xn)− E [f(X1, · · · , Xn)] | ≥ t] ,

where X1, · · · , Xn are independent random variables. This tail bound reflects the concentration or
fluctuation of f(X1, · · · , Xn). Note that there are two parts in f(X1, · · · , Xn): the set of random
variables and the function f . Intuitively, if each individual random variable concentrates well
and the function relies smoothly on each random variable, then f(X1, · · · , Xn) should concentrate
well1. Thus, we need a property that can reflect the concentration of each random variable and a
mechanism that allows us to exploit the property about the individual random variable to establish
the concentration of f(X1, · · · , Xn) (a.k.a. tensorization). In this lecture, we focus primarily
on the linear case where f(X1, · · · , Xn) = 1

n

∑n
k=1Xk. In this case, (log-)moment generating

function (MGF), which tensorizes well for sum, suffices to establish the concentration inequality of
1
n

∑n
k=1Xk.

Agenda:

• Variance bounds

• Some classical inequalities

• Sub-Gaussian distributions and Hoeffding inequality

• Sub-exponential distributions and Bernstein inequality

• Bounded difference inequality

• Two simple applications

1.1 Variance Bounds

Notice that concentration essentially reflects the fluctuations of random variables (from probability
aspect). As a basic quantity also for this purpose, it is useful to first study some variance (reflects
fluctuations from expectation aspect) bounds briefly. Recall that the variance of random variable
X, denoted Var [X], is defined as

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2.

1The basic principle underlying modern concentration theory was enunciated by Michel Talagrand in a 1996 paper:
“A random variable that depends (in a ‘smooth’ way) on the influence of many independent variables (but not too
much on any of them) is essentially constant”.
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Variance admits the following variational expression:

Var [X] = min
c

E
[
(X − c)2

]
.

Moreover, for two i.i.d random variables X and X ′, one has

Var [X] =
1

2
E
[
(X −X ′)2

]
.

Given a set of independent random variables X1, · · · , Xn, it is well-known that

Var

[
n∑
k=1

Xk

]
=

n∑
k=1

Var [Xk] .

This is indeed a sort of tensorization property of variance, which allows us to control the variance
of
∑n

k=1Xk by the variance of each coordinate. It is interesting to see whether this is true for a
general function of independent random variables Z = f(X1, · · · , Xn). The answer is affirmative.
Define the coordinate expectation Ek [Z] as the expectation with respect to Xk while holding the
remaining random variables (Xj)j 6=k fixed. Define the coordinate variance Vark [Z] as the variance
with respect to Xk while holding the remaining random variables (Xj)j 6=k fixed:

Vark [Z] = Ek
[
(Z − Ek[Z])2

]
.

It is worth emphasizing that both Ek [Z] and Vark [Z] are random variables of (Xj)j 6=k. Also notice
that for Z =

∑n
k=1Xk,

Ek [Z] = E [Xk] +
∑
j 6=k

Xj ,

and

Vark [Z] = Ek
[
(Xk − E [Xk])

2
]

= Var [Xk] .

Theorem 1.1 Let X1, · · · , Xn be a set of independent random variables and let Z = f(X1, · · · , Xn).
Then

Var [Z] ≤
n∑
k=1

E [Vark [Z]] .

Proof: The idea is to express f(X1, · · · , Xn) as an incremental or sum form and mimic the
arguments for sum function. To this end, define

Yk = E [f(X1, · · · , Xn)|X1, · · · , Xk] = Ek+1:n [Z] ,

where

Ek+1:n = Ek+1 · · ·En

means taking expectation with respect to (Xk+1, · · · , Xn). Then Yn = Z, Y0 = E [Z], and

Z − E [Z] =

n∑
k=1

(Yk − Yk−1) =:

n∑
k=1

Dk. (1.1)
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It is not hard to see that {Dk} is a martingale difference and

E [Dk] = E [E [Dk|X1, · · · , Xk−1]] = 0.

Moreover, for ` < k (also true for reverse direction)

E [DkD`] = E [E [DkD`|X1, · · · , X`]]

= E [D` E [Dk|X1, · · · , X`]]

= 0.

Therefore,

E
[
(Z − E [Z])2

]
=

n∑
k=1

E
[
D2
k

]
=

n∑
k=1

E
[
(Ek+1:n [Z]− Ek:n [Z])2

]
=

n∑
k=1

E
[
(Ek+1:n [Z − Ek[Z]])2

]
≤

n∑
k=1

EEk+1:n

[
(Z − Ek[Z])2

]
=

n∑
k=1

EEk
[
(Z − Ek[Z])2

]
=

n∑
k=1

E [Vark [Z]] ,

where the inequality follows from Jensen’s inequality (see the next section).

Remark 1.2 It is clear that the equality holds for f(X1, · · · , Xn) =
∑n

k=1Xk.

1.2 Some Classical Inequalities

Theorem 1.3 Let X be a non-negative random variable. Then,

E [X] =

∫ ∞
0

P [X > t] dt.

Proof: We have

E [X] = E
[∫ ∞

0
1{t<X}dt

]
=

∫ ∞
0

E
[
1{t<X}

]
dt =

∫ ∞
0

P [X > t] dt,

as claimed.

Exercise 1.4 Let X be a random variable and p ∈ (0,∞). Show that

E [|X|p] =

∫ ∞
0

ptp−1P [|X| > t] dt.
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Theorem 1.5 (Jensen’s inequality) If f is convex, then

E [f(X)] ≥ f(E [X]).

If f is concave, then

E [f(X)] ≤ f(E [X]).

Proof: It suffices to prove the first inequality. Let l(x) be the tangent line of f(x) at E [X]. Then,

E [f(X)] ≥ E [l(X)] = l(E [X]) = f(E [X]),

where the first equality follows from the fact that l(X) is a linear function and the second equality
follows from that l(x) is tangent to f(x) at E [X].

Next, we present two elementary tail bounds: Markov inequality and Chebshev inequality,
which control the tail probability of a random variable by its moments.

Theorem 1.6 (Markov inequality) If X is a non-negative variable, then any t > 0 one has

P [X > t] ≤ E [X]

t
.

Proof: A simple calculation yields that

E [X] ≥ E
[
X1{X>t}

]
≥ tP [X > t] ,

as claimed.

Theorem 1.7 (Chebshev inequality) For a random variable with finite variance, there holds,

P [|X − E [X] | > t] ≤
E
[
|X − E [X] |2

]
t2

.

Proof: Apply Markov inequality to the random variable |X − E [X] |2

Example 1.8 Let X be a Bernoulli variable,

X =

{
1 with probability p

0 with probability 1− p.

Let Xk, i = 1, · · · , n be i.i.d copies of X, and define Sn =
n∑
k=1

Xk. For a positive number p < α < 1,

the application of Markov inequality gives

P [Sn > αn] ≤ E [Sn]

αn
=
p

α
,

while the application of Chebshev inequality gives

P [Sn > αn] = P [Sn − pn > (α− p)n]

≤ P [|Sn − pn| > (α− p)n]

≤
E
[
|Sn − pn|2

]
(α− p)2n2

=
p(1− p)

(α− p)2n
.
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This example shows that we can have a better bound (order of 1/n rather than a constant order)
by Chebshev inequality. As can be seen later, by one of the main results in this lecture – Hoeffding
inequality, we can establish a tail bound that decays exponentially fast.

There is a natural way to extend the Markov inequality to random variables with higher-order
moments. For instance, if E

[
|X − E [X] |k

]
exists for some k > 1, then an application of the Markov

inequality to the random variable |X − E [X] |k yields that

P [|X − E [X] | > t] ≤
E
[
|X − E [X] |k

]
tk

.

Of course, we can use other functions rather than a single moment of the random variable. The
tight bounds that will be established next are indeed based on the moment generating function
(MGF, a mixture of all moments),

E
[
eλ(X−E[X])

]
.

In the same spirit of the Markov or Chebshev inequality, we have

P [X − E [X] > t] = P
[
eλ(X−E[X]) > eλt

]
≤ e−λtE

[
eλ(X−E[X])

]
, λ > 0.

Note that in the above inequality, there is a free parameter λ > 0 to choose. The Laplace transform
method or Chernoff method chooses λ in an interval [0, b] (b can be infinite or finite up to the bound
of moment generating function) such that the righthand side is minimized, leading to

P [X − E [X] > t] ≤ inf
λ∈[0,b]

e−λtE
[
eλ(X−E[X])

]
. (1.2)

It is easy to see that the key in the application of the Chernoff method is to estimate
E
[
eλ(X−E[X])

]
. Indeed, one advantage of using moment generating function over the all possible

polynomials is that the former one is a smooth function with the parameter λ and can be easily
manipulated. Next we will study two different distributions based on the different behaviors of
their moment generating functions, as well as the corresponding concentration inequalities.

1.3 Sub-Gaussian Distributions and Hoeffding Inequality

Let X ∼ N (µ, σ2) be a normal/Gaussian distribution of mean µ and variance σ2. We have

P [|X − µ| ≥ t] ≤ 2 exp

(
− t2

2σ2

)
(1.3)

Exercise 1.9 Prove (1.3).

The above inequality shows the tail bound of normal distribution decays exponentially fast. Thus,
it is interesting to see whether there are other distributions which exhibit similar behavior. The
answer is affirmative, and this family of distributions are known as sub-Gaussian distributions.
They are fully characterized by the behavior of their moment generating functions.

Definition 1.10 (Sub-Gaussian distribution) A random variable X with mean µ is sub-Gaussian
if there exists a positive number ν > 0 such that

E
[
eλ(X−µ)

]
≤ eλ2ν2/2 for all λ ∈ R. (1.4)
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Remark 1.11 Though here ν is NOT equivalent to the variance of a random variable, we can
sometimes think of it as the variance to get some intuition.

Example 1.12 (Gaussian distribution) Let X ∼ N (µ, σ2) be a Gaussian random variable.
One has

E [exp(λ(X − µ))] =
1√
2πσ

∫ ∞
−∞

exp(λx) exp(−x2/2σ2)dx

= exp(σ2λ2/2)
1√
2πσ

∫ ∞
−∞

exp

(
−1

2

(x
σ
− σλ

)2)
dx

= exp(σ2λ2/2). (1.5)

Thus X is sub-Gaussian with parameter ν = σ.

Example 1.13 (Rademacher variables) A Rademacher random variable ε takes the values {−1,+1}
in the same probability. By taking expectations and using the power series expansion, we have

E
[
eλX

]
=

1

2

(
e−λ + eλ

)
=
∞∑
k=0

λ2k

(2k)!

≤ 1 +
∞∑
k=1

λ2k

2kk!

= eλ
2/2,

which shows that ε is a sub-Gaussian variable with parameter ν = σ = 1.

Example 1.14 (Bounded random variables) Let X be zero-mean, and supported on a closed
interval [a, b]. We claim that

E
[
eλX

]
≤ eλ2(b−a)2/8.

In other words, X is sub-Gaussian with parameter (b − a)/2. To show this, define ψ(λ) (knowns
as log-moment generating function) as

ψ(λ) = logE
[
eλX

]
.

Then it suffices to show

ψ(λ) ≤ λ2(b− a)2

8
.

First, it is not hard to see that

ψ′(λ) =
E
[
XeλX

]
E [eλX ]
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and

ψ′′(λ) =
E
[
eλX

]
E
[
X2eλX

]
− (E

[
XeλX

]
)2

(E [eλX ])2

= E
[
X2 eλX

E [eλX ]

]
−
(
E
[
X

eλX

E [eλX ]

])2

.

It follows immediately that

ψ′(0) = 0.

Moreover, the expression for ψ′′(λ) implies that ψ′′(λ) is indeed the variance of X after a change
of measure. Thus, by the variational definition of variance, we have

ψ′′(λ) ≤ E

[(
X − b+ a

2

)2 eλX

E [eλX ]

]
≤ (b− a)2

4
, ∀λ ∈ R.

Also noting that ψ(0) = 0, we finally have

ψ(λ) = ψ(0) + ψ′(0)λ+
1

2
ψ′′(ξ)λ2 ≤ λ2(b− a)2

8
,

which completes the proof.

1.3.1 Hoeffding Inequality

By the Chernoff method (see (1.2)) we can show that sub-Gaussian random variables have the same
concentration properties as Gaussian random variables.

Theorem 1.15 (Hoeffding inequality) Let X (with E [X] = µ) be a sub-Gaussian random vari-
able with parameter ν. Then,

P [|X − µ| > t] ≤ 2e−
t2

2ν2 .

Proof: Inserting the sub-Gaussian property into(1.2) and optimizing the right hand side of the
above inequality with respect to λ > 0 yields that

P [X − µ > t] ≤ e−
t2

2ν2 .

Moreover, by considering −X, we can get

P [X − µ < −t] ≤ e−
t2

2ν2 ,

which concludes the proof.
Chernoff bounds can be easily extended to sums of independent random variables because of

the tensorization property of the moment generating functions in this situation, i.e., moment gen-
erating functions of sums of independent random variables become products of moment generating
functions.
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Proposition 1.16 Let X1, · · · , Xn be independent ν2k sub-Gaussian random variables. Then
∑n

k=1Xk

is a sub-Gaussian random variable with parameter ν =
∑n

k=1 ν
2
k .

Proof: The moment generating function
∑n

k=1Xk can be upper bounded as

E

[
exp

(
λ

(
n∑
k=1

Xk − E

[
n∑
k=1

Xk

]))]
= E

[
n∏
k=1

exp (Xk − E [Xk])

]
=

n∏
k=1

E [exp (Xk − E [Xk])]

≤
n∏
k=1

exp

(
λ2ν2k

2

)
= exp

(
λ2
∑n

k=1 ν
2
k

2

)
,

which completes the proof.
The follow general Hoeffding inequality follows immediately from Theorem 1.15 and Proposi-

tion 1.16.

Theorem 1.17 (General Hoeffding inequality) Suppose Xk, k = 1, · · · , n are independent
random variables, and Xk has mean µk and sub-Gaussian parameter νk. Then for all t ≥ 0, we
have

P

[∣∣∣∣∣
n∑
k=1

(Xk − µk)

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2

2
∑n

k=1 ν
2
k

)
.

Example 1.18 Suppose Xk, k = 1, · · · , n are independent random variables satisfying E [Xk] = µk
and a ≤ Xk ≤ b. Then for all t ≥ 0, we have

P

[∣∣∣∣∣
n∑
k=1

(Xk − µk)

∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2

n(b− a)2

)
.

Example 1.19 Let us revisit Example 1.8 using the Hoeffding inequality, yielding

P [Sn > αn] = P

[
n∑
k=1

(Xk − p) ≥ (α− p)n

]
≤ exp

(
−(α− p)2n

2

)
,

which decreases faster than what Chebshev inequality gives.

Remark 1.20 It is evident that a key in establishing the general Hoeffding inequality is that mo-
ment generating function or log-moment (or cumulant) generating function tensorizes well for sum
of independent random variables.

1.3.2 Equivalent Characterizations of sub-Gaussian Distribution2

We have shown that the sub-Gaussian property implies the exponential decay of the tail prob-
ability. In fact, the converse direction also holds true. Moreover, there are several equivalent
characterizations of the sub-Gaussian distribution.

Theorem 1.21 Let X be a mean zero random variable. Then the following four statements are
equivalent.

2This part can be skipped if you find it difficult.
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1. X is sub-Gaussian satisfying,

E [exp (λX)] ≤ exp
(
c1λ

2ν2
)

for all λ ∈ R.

2. The tails of X satisfy

P [|X| ≥ t] ≤ 2exp

(
− t2

c2ν2

)
for all t ≥ 0.

3. The moments of X satisfy

‖X‖Lp := (E [|X|p])1/p ≤ c3ν
√
p for all p ≥ 1.

4. The moment generating function of X2 is bounded at some point3,

E
[
exp

(
X2

c4ν2

)]
≤ e.

Here, ci, i = 1, · · · , 4 are positive, absolute constants (see the notational remark in the syllabus).

Proof: We will proceed the proof in the following way: 1⇒ 2⇒ 3⇒ 4⇒ 1.

1⇒ 2: We have established this above using the Chernoff method.

2⇒ 3: W.l.og, assume c2 = 1. Then,

E [|X|p] = p

∫ ∞
0

tp−1P [|X| ≥ t] dt

≤ 2p

∫ ∞
0

tp−1exp

(
− t

2

ν2

)
dt

= pνp
∫ ∞
0

s
p
2
−1e−sds (letting s =

t2

ν2
)

= pνpΓ(p/2) (Γ(z) is a Gamma function)

≤ pνp (p/2)p/2 (Γ(z) ≤ zz, check this! ).

Taking the p-th root on both sides and noting that p1/p ≤ e (check this!) concludes the proof.

3⇒ 4: As above, we can assume c3 = 1. Then

E
[
exp

(
X2

c4ν2

)]
=

∞∑
p=0

E
[
X2p

]
p!cp4ν

2p
≤
∞∑
p=0

ν2p(2p)p

p!cp4ν
2p

≤
∞∑
p=0

(
2e

c4

)p
=

1

1− 2e/c4
≤ e (use p! ≥ (p/e)p, check this!)

provided c4 ≥ 2e/(1− 1/e).

3The constant e on the righthand side does not have any special meaning and can be replaced by any absolute
constant (similar to different scales of a norm).
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4⇒ 1: Again, we can assume c4 = 1. First noting that

λx ≤ λ2ν2

2
+

x2

2ν2
,

we have

E [exp (λX)] ≤ exp
(
λ2ν2/2

)
E
[
exp

(
X2/(2ν2)

)]
≤ exp

(
λ2ν2/2

)√
E [exp (X2/(ν2))]

≤ e1/2exp
(
λ2ν2/2

)
≤ exp

(
λ2ν2

)
provided |λ| ≥ 1/ν, where the second inequality follows from the Jensen inequality to the function√
x. Thus, it remains to discuss the case |λ| < 1/ν. In this situation, using the inequality ex ≤

x+ ex
2

(check this!) we have

E [exp (λX)] ≤ E [λX]︸ ︷︷ ︸
=0

+E
[
exp

(
λ2X2

)]
= E

[
exp

(
λ2X2

)]
= E

[(
exp

(
X2/ν2

))(λ2ν2)]
≤
(
E
[
exp

(
X2/ν2

)])λ2ν2
≤ exp

(
λ2ν2

)
,

where in the second inequality we utilize the Jensen inequality by noting that λ2ν2 < 1.

Exercise 1.22 (Khintchine inequality) Let Xk, k = 1, · · · , n be i.i.d, zero mean, unit variance
sub-Gaussian random variables with parameter ν2. Letting a = (a1, · · · , an) ∈ Rn, show that for
any p ∈ [2,∞) we have

‖a‖2 ≤ ‖
n∑
k=1

akXk‖Lp . ν
√
p‖a‖2.

(See the notational remark in the syllabus for the meaning of ..)

At the end of this section we present the following lemma, where a very useful decoupling
technique via the introduction of an independent random variable for auxiliary randomness is used
in the proof. See Chapter 6.1 of [2] for the general decoupling technique.

Lemma 1.23 Let X be mean zero sub-Gaussian random variable with parameter ν2. Then

E
[
exp

(
λX2

)]
≤ 1

[1− 2λν2]
1/2
+

,

where the equality holds for X ∼ N (0, ν2).

Proof: When X ∼ N (0, ν2), we can establish the equality by direction integral based on the pdf
of the Gaussian distribution.

For a general sub-Gaussian variable X, let Z be an independent N (0, 1) random variable.
Noting that

E [exp (λxZ)] = exp

(
λ2x2

2

)
,

we have

E
[
exp

(
λX2

)]
= E

[
exp

(√
2λXZ

)]
≤ E

[
exp

(
λν2Z2

)]
≤ 1

[1− 2λν2]
1/2
+

,

where the first inequality follows from the sub-Gaussian property of X and the second inequality
follows from the the fact Z is N (0, 1).
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1.4 Sub-exponential Distributions and Bernstein Inequality

As we have seen from above, sub-Gaussian distribution is an extension of the Gaussian distribution.
In contrast, sub-exponential distribution is an extension of the squared Gaussian distribution. For
simplicity, let X ∼ N (0, 1) be standard normal distribution and let Z = X2 be χ2. Then,

E
[
eλ(Z−1)

]
=

{
e−λ√
1−2λ , if λ < 1

2

not exist, otherwise.

Thus, the moment generating function does not exist over the entire real line. Moreover, since
1− x > e−x

2−x (check this!) for all x < 1/2, one has

E
[
eλ(Z−1)

]
≤ e4λ2/2 for all |λ| < 1

4
.

Compared with (1.4), we see that similar bound only holds in a local neighborhood of zero. This
kind of condition defines the family of sub-exponential distributions.

Definition 1.24 (Sub-exponential distribution) A random variable X with mean µ is sub-
exponential if there are non-negative parameters (ν, b) such that

E
[
eλ(X−µ)

]
≤ eν2λ2/2 for all |λ| < 1/b.

Example 1.25 (χ2-distribution) We have shown that if X ∼ N (0, 1), then X2 is sub-exponential
with parameters (ν, b) = (2, 4).

Example 1.26 (Exponential distribution) Recall that X has exponential distribution with rate
a > 0 if the pdf of X is given by

f(x) =

{
ae−ax x ≥ 0

0 x < 0.

A direct calculation shows that E [X] = 1
a . For simplicity let a = 1. Then we have

E [exp (λ(X − 1))] =

∫ ∞
0

ex(λ−1)e−λdx =

{
e−λ

1−λ λ < 1

∞ λ ≥ 1.

The application of 1− x > e−x
2−x for x < 1/2 yields that

E [exp (λ(X − 1))] ≤ eλ2 for all |λ| < 1

2
.

Bernstein condition based on the moments of X provides an indirect way to verify the sub-
exponential property. More precisely, let X be random variable with mean µ and variance σ2. We
say Bernstein’s condition with parameter b holds if∣∣∣E [(X − µ)k

]∣∣∣ ≤ 1

2
k!σ2bk−2 for k = 3, 4, · · ·
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Lemma 1.27 If X satisfies the Bernstein condition, then X is sub-exponential with parameters
(
√

2σ, 2b).

Proof: We have

E
[
eλ(X−µ)

]
=

∞∑
k=0

E
[
λk(X − µ)k

]
k!

≤ 1 +
σ2λ2

2
+
σ2λ2

2

∞∑
k=1

(|λ|b)k

= 1 +
σ2λ2

2
+

σ2λ2|λ|b
2(1− |λ|b)

(
∀ |λ| < 1

b

)
= 1 +

σ2λ2/2

1− |λ|b

≤ e
σ2λ2/2
1−|λ|b (1.6)

≤ e
σ2(
√
2λ)2

2 ∀ |λ| ≤ 1

2b
,

which implies X is sub-exponential with parameters (
√

2σ, 2b).

Exercise 1.28 Let X be a random variable with E [X] = µ. Suppose |X − µ| ≤ b. Show that X
satisfies the Bernstein condition.

1.4.1 Bernstein Inequality

For sub-exponential distributions we can establish the Bernstein tail, which mixes the Gaussian
tail and the exponential tail.

Theorem 1.29 (Bernstein inequality) Suppose X is a sub-exponential variable with parameters
(ν, b). Then

P [|X − µ| > t] ≤ 2 exp

(
−1

2
min

(
t2

ν2
,
t

b

))
=

{
2e−

t2

2ν2 , if 0 ≤ t ≤ ν2

b

2e−
t
2b if t > ν2

b .

Proof: We assume without loss of generality µ = 0. The application of the Chernoff approach
yields that

P [X − µ > t] ≤ e−λtE
[
eλX

]
≤ e−λt+ν2λ2/2, ∀0 < λ ≤ 1/b.

Optimizing the right hand side with respect to λ over (0, 1/b] gives the one-sided tail bound.
Consider −X for the other tail bound.

Example 1.30 Let X be a random variable such that |X − µ| ≤ b. We know that it is also sub-
exponential with parameters (

√
2σ, b) where σ is the variance of X. Then the Bernstein inequality

implies that

P [|X − µ| > t] ≤

{
2e−

t2

4σ2 , if 0 ≤ t ≤ σ2

b

2e−
t
2b if t > σ2

b ,

12



while the application of the Hoeffding type bound gives

P [|X − µ| > t] ≤ 2e−
t2

2b2 .

It is evident that when t is sufficiently large, the Hoeffding type bound is better than the Bernstein
type bound (not a very useful conclusion since it requires t ≥ b). However, it is worth noting that
if t is small, the Bernstein type bound might be better than the Hoeffding type bound since it is
possible that σ2 � b2.

For sub-exponential variable satisfying the Bernstein condition, we can actually establish the
following slightly improved bound

P [|X − µ| > t] ≤ 2exp

(
− t2

2(σ2 + bt)

)
. (1.7)

Exercise 1.31 Prove(1.7). (Hint: Apply the Chernoff method to the inequality (1.6) directly.)

Proposition 1.32 Suppose that Xk, k = 1, · · · , n are n independent variables, and that Xk is
sub-exponential with parameters (νk, bk). Then

∑n
k=1(Xk − µk) is sub-exponential with parameters

(ν∗, b∗), where

ν2∗ =
n∑
k=1

ν2k and b∗ = max
1≤k≤n

bk.

Moreover, if Xk, k = 1, · · · , n are i.d.d sub-exponential with parameters (ν, b), then
∑n

k=1(Xk −µ)
is sub-exponential with parameters (

√
nν, b).

Proof: The moment generating function of
∑n

k=1(Xk − µk) can be bounded as follows

E

[
exp

(
λ

n∑
k=1

(Xk − µk)

)]
=

n∏
k=1

E [exp (λ(Xk − µk))] ≤
n∏
k=1

exp
(
λ2ν2k/2

)
,

where the inequality is valid for all λ < (maxk bk)
−1.

The following general Bernstein inequality follows immediately from the last proposition.

Theorem 1.33 (General Bernstein inequality) Suppose that Xk, i = 1, · · · , n are n indepen-
dent variables, and that Xk is sub-exponential with parameters (νk, bk). Then,

P

[∣∣∣∣∣
n∑
k=1

(Xk − µk)

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−1

2
min

(
t2

ν2∗
,
t

b∗

))
=

2e
− t2

2ν2∗ , if 0 ≤ t ≤ ν2∗
b∗

2e−
t

2b∗ if t > ν2∗
b∗
,

where

ν2∗ =

n∑
k=1

ν2k and b∗ = max
1≤k≤n

bk.

13



By last theorem, we have

P

[∣∣∣∣∣ 1√
n

n∑
k=1

(Xk − µ)

∣∣∣∣∣ ≥ t
]
≤

2e−
t2

2ν2 0 ≤ t ≤
√
nν2

b

2e−
√
nt
2b t >

√
nν2

b .

Thus, 1√
n

∑n
k=1(Xk −µ) also exhibits two types of tail bounds: Gaussian tail and exponential tail.

It is clear that the Gaussian tail region 0 ≤ t ≤
√
nν2

b increases linearly with respect to
√
n. Thus,

the exponential tail in the Bernstein inequality does not contradicts the central limit theorem.

Example 1.34 Let Zk, k = 1, · · · , n be i.i.d Chi-square variables. Noting that Zk is sub-exponential
with parameters (2, 4), there holds

P

[∣∣∣∣∣ 1n
n∑
k=1

(Zk − 1)

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−n

8
min

(
t2, t

))
.

1.4.2 Equivalent Characterizations of sub-Exponential Distribution4

Under a generalized definition of sub-exponential distributions (in for example High-dimensional
probability: An introduction with applications in data science by Roman Vershynin), we may es-
tablish the following equivalence.

Theorem 1.35 Let X be a mean zero random variable. Then the following four statements are
equivalent.

1. X is sub-exponential satisfying,

E [exp (λX)] ≤ exp
(
c1λ

2ν2
)

for all |λ| ≤ c′1
ν
. (1.8)

Note that if X satisfies Definition 1.24, then it will satisfy (1.8) with max(ν, b). However, the
resulting Bernstein inequality will be weaker since both ν and b will be replaced by max(ν, b).

2. The tails of X satisfy

P [|X| ≥ t] ≤ 2exp

(
− t

c2ν

)
for all t ≥ 0.

3. The moments of X satisfy

‖X‖Lp = (E [|X|p])1/p ≤ c3νp for all p ≥ 1.

4. The moment generating function of |X| is bounded at some point5,

E
[
exp

(
|X|
c4ν

)]
≤ e.

Here, ci, i = 1, · · · , 4 and c′1 are positive, absolute constants.

Proof: We will proceed the proof in the following way: 2⇒ 3⇒ 4⇒ 2 and 1⇔ 3.

4This part can be skipped if you find it difficult.
5The constant e on the righthand side does not have any special meaning and can be replaced by any absolute

constant (similar to different scales of a norm).
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2⇒ 3: W.l.o.g, we assume c2 = 1. Then,

E [|X|p] = p

∫ ∞
0

tp−1P [|X| ≥ t] dt

≤ 2p

∫ ∞
0

tp−1exp (−t/v) dt

= 2pνpΓ(p)

≤ 2pνppp.

Taking a p-th root on both sides yields the result.

3⇒ 4: As above we assume c3 = 1. Then,

E
[
exp

(
X

c4ν

)]
=
∞∑
p=0

E [|X|p]
p!cp4ν

p
≤
∞∑
p=0

(νp)p

p!cp4ν
p
≤
∞∑
p=0

(
e

c4

)p
=

1

1− e/c4
≤ e

provided c4 ≥ e/(1− 1/e).

4⇒ 2: Assume c4 = 1. Applying the Markov inequality to eX/ν , it is easy to see that

P [X ≥ t] ≤ e1−t/ν .

With the same result for the negative tail, we have

P [|X| ≥ t] ≤ min(2e1−t/ν , 1) ≤ 2exp

(
− 2t

5ν

)
,

where in the second inequality we choose a constant c such that both 2e1−t/ν ≤ 2e−ct/ν when t is
greater than some threshold and 2e−ct/ν ≥ 1 when t is greater than the same threshold.

1⇒ 3 Using the numerical inequality |x|p ≤ pp(ex + e−x) for all x and p > 0 (check this!) with

x =
c′1X
ν and then taking the expectation yields

E
[∣∣∣∣c′1Xν

∣∣∣∣p] ≤ E
[
pp
(

exp

(
c′1X

ν

)
+ exp

(
−c′1X
ν

))]
≤ 2ppexp

(
c1

(c′1)
2

ν2
ν2
)
,

which gives 3 after simplification.

3⇒ 1 Assume c3 = 1 for simplicity. By Taylor’s expansion we have

E [exp (λX)] = 1 + E [λX] +
∞∑
p=2

λpE [Xp]

p!

≤ 1 +
∞∑
p=2

(λpν)p

p!
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≤ 1 +

∞∑
p=2

(λeν)p (use p! ≥ (p/e)p)

= 1 +
(λeν)2

1− λeν
≤ 1 + 2(λeν)2 (assume λeν ≤ 1/2)

≤ exp
(
2(λeν)2

)
,

which concludes the proof with c1 = 2e2 and c′1 = 2e.

1.5 Bounded Differences Inequality

In this section, we make our first attempt to extend the concentration inequalities to nonlinear
functions of independent random variables f(X1, · · · , Xn). The idea is overall similar to that for
the tensorization of variance in Section 1.1: Expressing f(X1, · · · , Xn) as an incremental or sum
form and mimic the arguments for sum function. To this end, we need the notion of conditional
expectation and martingale. Recalling the notation of Dk in Section 1.1, the martingale structure
enables us to establish the sub-Gaussian tail once they are bounded.

Theorem 1.36 (Azuma-Hoeffding tail bound) Let {Dk}nk=1 be the martingale difference se-
quence defined in (1.1). Suppose that Ak ≤ Dk ≤ Bk almost surely for all k ≥ 1, where Ak and Bk
are functions of X1, · · · , Xk−1. If Bk −Ak ≤ Lk, then for all t ≥ 0, we have

P

[∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t
]
≤ 2e

− 2t2∑n
k=1

L2
k

Proof: Noting that E [Dk|X1, · · · , Xk−1] = 0, repeating the argument in Example 1.14 for a
conditional expectation yields that

E
[
eλDk |X1, · · · , Xk−1

]
≤ exp

(
λ2(Bk −Ak)2

8

)
≤ exp

(
λ2L2

k

8

)
(1.9)

Consequently,

E
[
eλ

∑n
k=1Dk

]
= E

[
E
[
eλ

∑n
k=1Dk |X1, · · · , Xn−1

]]
= E

[
eλ

∑n−1
k=1 DkE

[
eλDn |X1, · · · , Xn−1

]]
≤ eλ2L2

n/8E
[
eλ

∑n−1
k=1 Dk

]
.

Thus, iterating this procedure yields E
[
eλ

∑n
k=1Dk

]
≤ eλ2

∑n
k=1 L

2
k/8, which means that

∑n
k=1Dk is

sub-Gaussian with parameter ν2 =
∑n
k=1 L

2
k

4 , and an application of the former Hoeffding inequality
yields the desired tail bound.

Remark 1.37 There are two key ingredients in the above proof: one is the sub-Gaussian type
property but for the conditional expectation; the other one is the tensorization property of the
moment generating function but for martingale difference sequence.
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Exercise 1.38 Write out the details for the proof of (1.9).

Since Azuma-Hoeffding inequality actually shows the concentration of f(X1, · · · , Xn) around its
mean with the proviso thatDk are bounded, a natural question will be for which f the corresponding
Dk are bounded. Next we are going to show that this is the case if f does not fluctuate with each ar-
gument too much, leading to the bounded difference inequality, i.e., the McDiarmid inequality. This
result reveals a connection between stability and concentration: if a function f(x1, · · · , xn) is not
too sensitive to any of its coordinates xi, then it is anticipated that f(X1, · · · , Xn) (Xi, i = 1, · · · , n
are independent or weakly independent) is close to its mean. This is also the first concentration re-
sult in this course that is beyond the sum of independent random variables, as well as a benchmark
concentration inequality we will revisit a few times.

Theorem 1.39 (McDiarmid inequality/Bounded difference inequality) Let Xk, k = 1, · · · , n
be independent random variables taking values in X , where X is the sample space. Suppose that a
function f : X n → R satisfies the bounded difference property

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ Lk

with parameters (L1, · · · , Ln) for all x1, · · · , xn, x′k ∈ X .Then

P [|f(X)− E [f(X)] | ≥ t] ≤ 2e
− 2t2∑n

k=1
L2
k .

Proof: Define Dk as in (1.1). By the last theorem we only need to show Dk is bounded. To this
end, define

Ak = inf
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− Ek:n

[
f(X1, · · · , Xk−1, Xk, Xk+1, · · · , Xn︸ ︷︷ ︸)

]
and

Bk = sup
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− Ek:n

[
f(X1, · · · , Xk−1, Xk, Xk+1, · · · , Xn︸ ︷︷ ︸)

]
.

It is clear that Ak ≤ Dk ≤ Bk almost surely. Moreover, we have

Bk −Ak = sup
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− inf
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
≤ sup

x,y∈X

∣∣∣∣Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− Ek+1:n

[
f(X1, · · · , Xk−1, y,Xk+1, · · · , Xn︸ ︷︷ ︸)

]∣∣∣∣
= sup

x,y∈X

∣∣∣∣Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)− f(X1, · · · , Xk−1, y,Xk+1, · · · , Xn︸ ︷︷ ︸)

]∣∣∣∣
≤ Lk,

as desired.

Exercise 1.40 Show how to prove the result in Example 1.18 using the McDiarmid inequality.
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Example 1.41 (Rademacher complexity) Let {εk}nk=1 be an i.i.d sequence of Rademacher vari-
ables, namely

P [εk = 1] = P [εk = −1] =
1

2
,

and let ε = (ε1, · · · , εn). Given a subset A of Rn, define the random variable

Z = sup
a∈A

[
n∑
k=1

akεk

]
= sup

a∈A
[〈a, ε〉] .

The Rademacher complexity, denoted Rn(A), is defined as the expectation of Z,

Rn(A) = E [Z] .

Here the random variable Z and its expectation measures the size of A based on the Rademacher
sequence. Roughly speaking, it measures the “diameter” of the set in different directions randomly
and then computes the average. (when it is not clear how to do, try randomly). They also reflect
how strong the set A looks like a random set defined by the Rademacher sequence. For example, if
A = {1,−1}n, then it is equal to ε in certain sense.

We want to show that the McDiarmid inequality can be used to establish the concentration of
Z. Define

f(x1, · · · , xn) = sup
a∈A

[
n∑
k=1

akxk

]
, xk ∈ {1,−1}.

it suffices to show that f satisfies the bounded difference property. To this end, we have

f(x1, · · · , xk−1, xk, xk+1, xn)− f(x1, · · · , xk−1, x′k, xk+1, xn)

= sup
a∈A

[
n∑
k=1

akxk

]
− sup
a∈A

k−1∑
j=1

ajxj + akx
′
k +

n∑
j=k+1

ajxj


≤ sup

a∈A

( n∑
k=1

akxk

)
−

k−1∑
j=1

ajxj + akx
′
k +

n∑
j=k+1

ajxj


= sup

a∈A
ak(xk − x′k)

≤ 2 sup
a∈A
|ak|,

where the last line follows from the fact xk, x
′
k ∈ {1,−1}. Similarly, we have

f(x1, · · · , xk−1, x′k, xk+1, xn)− f(x1, · · · , xk−1, xk, xk+1, xn) ≤ 2 sup
a∈A
|ak|.

Consequently,

|f(x1, · · · , xk−1, x′k, xk+1, xn)− f(x1, · · · , xk−1, xk, xk+1, xn)| ≤ 2 sup
a∈A
|ak|.
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Thus, by the McDiarmid inequality we can see that Z is sub-Gaussian with parameter ν2 =∑n
k=1 supa∈A |ak|2. Later, we will show that this parameter can be sharpened to supa∈A

∑n
k=1 |ak|2.

To some extend, this has motivated the development of other machinaries for establishing the con-
centration inequality. In order to achieve the goal, we need to exploit more structure of f , for
example the convexity of it.

Example 1.42 Let Xk, k = 1, · · · , n be bounded random vectors in Rd satisfying E [Xk] = 0 and
‖Xk‖2 ≤ B. We want to study the concentration of∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
2

around the mean E
[∥∥ 1

n

∑n
k=1Xk

∥∥
2

]
. Let f(x1, · · · , xn) =

∥∥ 1
n

∑n
k=1 xk

∥∥
2
, where xk ∈ Rn. Then, by

triangular inequality

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ 1

n
‖xk − x′k‖2 ≤

2B

n
.

Thus, the application of the bounded difference inequality yields that

P

[∣∣∣∣∣
∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
2

− E

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
2

]∣∣∣∣∣ ≥ t
]
≤ 2exp

(
− nt

2

2B2

)
.

If we further assume E
[
‖Xk‖22

]
≤ σ2. Then

E

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
2

]
≤

E

∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
2

2

1/2

=

(
1

n2

n∑
k=1

E
[
‖Xk‖22

])1/2

≤ σ√
n
.

Consequently, we have

P

[∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥
2

≥ σ√
n

+ t

]
≤ 2exp

(
− nt

2

2B2

)
.

Remark 1.43 The bounded difference inequality is very useful and the next two lectures are essen-
tially about generalizing the bounded different inequality by considering different f and (X1, · · · , Xn).

1.6 Two Simple Applications

1.6.1 Random Game

Suppose you are playing a very simple game with your friend and decide whether a coin is in his
left or right hand after a number of queries with him. In each query, he will give you an answer.
However, he only gives you the right one with probability 1

2 +δ for a small δ > 0. Thus, if you make
a decision after only one query by using his answer, this is pretty much equivalent to a random
guess since δ is small. Here is strategy that can guarantee a correct decision with high probability:
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query your friend n times and then make a majority vote. Then we can show that by doing so you
can have the correct answer with probability 1− ε provided

n ≥ 1

2δ2
log

(
1

ε

)
. (1.10)

To show this, let Xk be random variable corresponding to the k-th query, defined as

Xk =

{
1 wrong answer is given

0 correct answer is given.

Consequently,

P [Xk = 1] =
1

2
− δ and P [Xk = 0] =

1

2
+ δ.

Moreover, letting Sn =
∑n

k=1Xk, it suffices to bound the probability

P
[
Sn ≥

n

2

]
.

First we have E [Sn] = (12 − δ)n. Moreover, since Xk ∈ [0, 1], it follows from the (one sided)
Hoeffding inequality (see Example 1.18) that

P
[
Sn ≥

n

2

]
= P [Sn − E [Sn] ≥ δn] ≤ exp

(
−2δ2n

)
.

At last, it is not hard to see that the righthand side of the above inequality is smaller than ε as
long as (1.10) is satisfied.

1.6.2 Random Projection and Dimension Reduction

Suppose there are n vectors {x1, · · · , xn} in Rd. If the data dimension d is too large, it might be
expensive to store and manipulate the data. Thus, we want to project these vectors onto a lower
dimensional space while preserve certain essential features.

Let P ∈ Rm×d be a projection matrix which maps each vector xi to a m dimensional vector
Pxi. We are interested in those projections that can approximately preserve the pairwise distance
of the vectors. More precisely, given some tolerance δ ∈ (0, 1), we hope that:

(1− δ)‖xi − xj‖22 ≤ ‖Pxi − Pxj‖22 ≤ (1 + δ)‖xi − xj‖22, for all xi 6= xj . (1.11)

The problem of finding a projection which satisfies the condition (1.11) is typically known as the
Johnson-Lindenstrauss embedding. Constructing such a projection which can satisfy the condition
with probability at least 1− ε turns out to be straightforward as long as the projected dimension
is lower bounded as

m & δ−2 log
(n
ε

)
, (1.12)

with the projection matrix given by

P = A/
√
m, where the entries of A are i.i.d N (0, 1) entries. (1.13)
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Let ak, k = 1, · · · ,m denote the k-th row of A. For any fixed vector x ∈ Rd of unit norm (i.e.,
‖x‖2 = 1), by the basic property of Gaussian distribution, we have that aTk x ∼ N (0, 1), so |aTk x| is
a Chi-square random variable. Moreover, there holds

E
[
‖Px‖22

]
=

1

m
E

[
m∑
k=1

|aTk x|2
]

= 1.

Thus by the Bernstein tail bound in Example 1.34, we have

P
[∣∣‖Px‖22 − 1

∣∣ ≥ δ] = P

[∣∣∣∣∣ 1

m

m∑
k=1

|aTk x|2 − 1

∣∣∣∣∣ ≥ δ
]
≤ 2exp

(
−mδ

2

8

)
, for δ ∈ (0, 1). (1.14)

Note that (1.11) is equivalent to∣∣∣∣∣
∥∥∥∥P xi − xj
‖xi − xj‖2

∥∥∥∥2
2

− 1

∣∣∣∣∣ ≤ δ, for all xi 6= xj .

Therefore, for the construction of P in (1.13), the utilization of (1.14) yields that

P

[∣∣∣∣∣
∥∥∥∥P xi − xj
‖xi − xj‖2

∥∥∥∥2
2

− 1

∣∣∣∣∣ ≥ δ for some xi 6= xj

]
≤ 2

(
n

2

)
exp

(
−mδ

2

8

)
≤ ε

provided (1.12) holds. In other words, the approximate isometry property (1.11) can be guaranteed
with high probability if projecting the data onto a lower dimension via Gaussian random projection.
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