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This lecture provides a short introduction on what we are interested in this course and why we
are interested in them. We begin with the arguably simplest example.

Given n i.i.d random variables X1, · · · , Xn with mean µ = E [Xk], maybe the most common
approach to infer µ is to use the sample mean 1

n

∑n
k=1Xk as (stochastic) estimator. Then what

can we say about the convergence of 1
n

∑n
k=1Xk?

• By law of large numbers (LLN), it is known that 1
n

∑n
k=1Xk converges to µ almost surely.

• Suppose the variance of the random variable is σ2. Central limit theorem (CLT) implies that

∑n
k=1(Xk − µ)

σ
√
n

→ g ∼ N (0, 1),

from which a confidence interval can be constructed (in the asymptotic sense). It follows that

P
[∣∣∣∣
∑n

k=1(Xk − µ)

n

∣∣∣∣ ≥ t
]

= P
[∣∣∣∣
∑n

k=1(Xk − µ)

σ
√
n

∣∣∣∣ ≥
t
√
n

σ

]

≈ P
[
|g| ≥ t

√
n

σ

]
≤ 2e−

nt2

2σ2 .

Note that both LLN and CLT are asymptotic results which are not useful if we want to measure
how 1

n

∑n
k=1Xk deviates from µ for finite n. This lecture considers the finite n or nonasymptotic

case. That is, we would like to provide an explicit bound for

P

[∣∣∣∣∣
1

n

n∑

k=1

Xk − µ
∣∣∣∣∣ ≥ t

]
, (0.1)

in contrast to ≈ obtained from CLT. Though an explicit bound can be obtained from CLT through

P
[∣∣∣∣
∑n

k=1(Xk − µ)

σ
√
n

∣∣∣∣ ≥
t
√
n

σ

]
≤ P

[
|g| ≥ t

√
n

σ

]
+

∣∣∣∣P
[∣∣∣∣
∑n

k=1(Xk − µ)

σ
√
n

∣∣∣∣ ≥
t
√
n

σ

]
− P

[
|g| ≥ t

√
n

σ

]∣∣∣∣ ,

the resulting bound is not desirable due to the second term (see Theorem 2.1.3 of [1]). Thus, we
need to seek alternative approaches that bypass CLT. It turns out the asymptotic CLT result admit
more quantitative nonasymptotic variants, though not as concise as CLT.

Deviation bound for (0.1) is known as concentration inequalities for the sum of independent
random variables. However, in many applications the quantity of interest is not a sum but a
nonlinear function of independent random variables. For example, let X ∈ Rm×n be a random
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matrix1 whose entries are independent random variables. Clearly, the spectral norm of X, denoted
‖X‖2 can not be expressed as the sum of its entries. In fact, we can express ‖X‖2 as

‖X‖2 = max
‖u‖2=1,‖v‖2=1

u>Xv, (0.2)

which is a non-linear function of (Xij). This encourages us to extend concentration inequalities to

P [|f(X1, · · · , Xn)− E [f(X1, · · · , Xn)] | ≥ t]

for more general f in addition to sum. A large effort will go into developing techniques suitable
for the general concentration inequalities, during which more properties of random variables will
be studied.

Note that in order to provide a high probability bound for the size of f(X1, · · · , Xn), we still need
to understand the size of E [f(X1, · · · , Xn)] whose information is not contained in concentration
inequality. For general f , bounding E [f(X1, · · · , Xn)] is by no means an easy task. Since we
cannot hope to address this problem for every possible f , we specify our attention to expectation
of suprema:

E
[
sup
t∈T

Xt

]
, T is an index set,

which arises from a wide of applications, i.e. (0.2) for spectral norm of random matrices. As a
special case, we will consider the following form arising from generalization analysis in statistical
learning:

sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ , F is a class of functions.

The result for this case is usually referred to as uniform law of large numbers (ULLN).
The concentration inequalities for random variables can be extended to random matrices.

We will focus on the bound of

P

[∥∥∥∥∥
n∑

k=1

(Xk − E [Xk])

∥∥∥∥∥
2

≥ t
]
.

It has applications in for example covariance matrix estimation, sparse linear regression.
For an estimation problem, there can be many different estimators. Thus, a natural question is

which one is better or whether an estimator achieves the optimal performance. The answer to this
question relies on the criterion that is used. For example, a minimum-variance unbiased estimator
(MVUE) is an unbiased estimator that has lower variance than any other unbiased estimators. In
this lecture, we consider the minimax framework, and study the minimax lower bounds over a
family of estimation problems.

Reading Materials

[1] Roman Vershynin, High-dimensional probability: An introduction with applications in data
science.

1With a light abuse of notation, capital letters are also used to denote matrices.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 1: Chernoff Method and Concentration Inequalities

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/02/25)

Motivation: Recall that our first goal is to establish the tail probability for

P [|f(X1, · · · , Xn)− E [f(X1, · · · , Xn)] | ≥ t] ,

where X1, · · · , Xn are independent random variables. This tail bound reflects the concentration or
fluctuation of f(X1, · · · , Xn). Note that there are two parts in f(X1, · · · , Xn): the set of random
variables and the function f . Intuitively, if each individual random variable concentrates well
and the function relies smoothly on each random variable, then f(X1, · · · , Xn) should concentrate
well1. Thus, we need a property that can reflect the concentration of each random variable and a
mechanism that allows us to exploit the property about the individual random variable to establish
the concentration of f(X1, · · · , Xn) (a.k.a. tensorization). In this lecture, we focus primarily
on the linear case where f(X1, · · · , Xn) = 1

n

∑n
k=1Xk. In this case, (log-)moment generating

function (MGF), which tensorizes well for sum, suffices to establish the concentration inequality of
1
n

∑n
k=1Xk.

Agenda:

• Variance bounds

• Some classical inequalities

• Sub-Gaussian distributions and Hoeffding inequality

• Sub-exponential distributions and Bernstein inequality

• Bounded difference inequality

• Two simple applications

1.1 Variance Bounds

Notice that concentration essentially reflects the fluctuations of random variables (from probability
aspect). As a basic quantity also for this purpose, it is useful to first study some variance (reflects
fluctuations from expectation aspect) bounds briefly. Recall that the variance of random variable
X, denoted Var [X], is defined as

Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2.

1The basic principle underlying modern concentration theory was enunciated by Michel Talagrand in a 1996 paper:
“A random variable that depends (in a ‘smooth’ way) on the influence of many independent variables (but not too
much on any of them) is essentially constant”.
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Variance admits the following variational expression:

Var [X] = min
c

E
[
(X − c)2

]
.

Moreover, for two i.i.d random variables X and X ′, one has

Var [X] =
1

2
E
[
(X −X ′)2

]
.

Given a set of independent random variables X1, · · · , Xn, it is well-known that

Var

[
n∑

k=1

Xk

]
=

n∑

k=1

Var [Xk] .

This is indeed a sort of tensorization property of variance, which allows us to control the variance
of
∑n

k=1Xk by the variance of each coordinate. It is interesting to see whether this is true for a
general function of independent random variables Z = f(X1, · · · , Xn). The answer is affirmative.
Define the coordinate expectation Ek [Z] as the expectation with respect to Xk while holding the
remaining random variables (Xj)j 6=k fixed. Define the coordinate variance Vark [Z] as the variance
with respect to Xk while holding the remaining random variables (Xj)j 6=k fixed:

Vark [Z] = Ek
[
(Z − Ek[Z])2

]
.

It is worth emphasizing that both Ek [Z] and Vark [Z] are random variables of (Xj)j 6=k. Also notice
that for Z =

∑n
k=1Xk,

Ek [Z] = E [Xk] +
∑

j 6=k
Xj ,

and

Vark [Z] = Ek
[
(Xk − E [Xk])

2
]

= Var [Xk] .

Theorem 1.1 Let X1, · · · , Xn be a set of independent random variables and let Z = f(X1, · · · , Xn).
Then

Var [Z] ≤
n∑

k=1

E [Vark [Z]] .

Proof: The idea is to express f(X1, · · · , Xn) as an incremental or sum form and mimic the
arguments for sum function. To this end, define

Yk = E [f(X1, · · · , Xn)|X1, · · · , Xk] = Ek+1:n [Z] ,

where

Ek+1:n = Ek+1 · · ·En
means taking expectation with respect to (Xk+1, · · · , Xn). Then Yn = Z, Y0 = E [Z], and

Z − E [Z] =

n∑

k=1

(Yk − Yk−1) =:

n∑

k=1

Dk. (1.1)
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It is not hard to see that {Dk} is a martingale difference and

E [Dk] = E [E [Dk|X1, · · · , Xk−1]] = 0.

Moreover, for ` < k (also true for reverse direction)

E [DkD`] = E [E [DkD`|X1, · · · , X`]]

= E [D` E [Dk|X1, · · · , X`]]

= 0.

Therefore,

E
[
(Z − E [Z])2

]
=

n∑

k=1

E
[
D2
k

]

=

n∑

k=1

E
[
(Ek+1:n [Z]− Ek:n [Z])2

]

=

n∑

k=1

E
[
(Ek+1:n [Z − Ek[Z]])2

]

≤
n∑

k=1

EEk+1:n

[
(Z − Ek[Z])2

]

=

n∑

k=1

EEk
[
(Z − Ek[Z])2

]

=

n∑

k=1

E [Vark [Z]] ,

where the inequality follows from Jensen’s inequality (see the next section).

Remark 1.2 It is clear that the equality holds for f(X1, · · · , Xn) =
∑n

k=1Xk.

1.2 Some Classical Inequalities

Theorem 1.3 Let X be a non-negative random variable. Then,

E [X] =

∫ ∞

0
P [X > t] dt.

Proof: We have

E [X] = E
[∫ ∞

0
1{t<X}dt

]
=

∫ ∞

0
E
[
1{t<X}

]
dt =

∫ ∞

0
P [X > t] dt,

as claimed.

Exercise 1.4 Let X be a random variable and p ∈ (0,∞). Show that

E [|X|p] =

∫ ∞

0
ptp−1P [|X| > t] dt.
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Theorem 1.5 (Jensen’s inequality) If f is convex, then

E [f(X)] ≥ f(E [X]).

If f is concave, then

E [f(X)] ≤ f(E [X]).

Proof: It suffices to prove the first inequality. Let l(x) be the tangent line of f(x) at E [X]. Then,

E [f(X)] ≥ E [l(X)] = l(E [X]) = f(E [X]),

where the first equality follows from the fact that l(X) is a linear function and the second equality
follows from that l(x) is tangent to f(x) at E [X].

Next, we present two elementary tail bounds: Markov inequality and Chebshev inequality,
which control the tail probability of a random variable by its moments.

Theorem 1.6 (Markov inequality) If X is a non-negative variable, then any t > 0 one has

P [X > t] ≤ E [X]

t
.

Proof: A simple calculation yields that

E [X] ≥ E
[
X1{X>t}

]
≥ tP [X > t] ,

as claimed.

Theorem 1.7 (Chebshev inequality) For a random variable with finite variance, there holds,

P [|X − E [X] | > t] ≤ E
[
|X − E [X] |2

]

t2
.

Proof: Apply Markov inequality to the random variable |X − E [X] |2

Example 1.8 Let X be a Bernoulli variable,

X =

{
1 with probability p

0 with probability 1− p.

Let Xk, i = 1, · · · , n be i.i.d copies of X, and define Sn =
n∑
k=1

Xk. For a positive number p < α < 1,

the application of Markov inequality gives

P [Sn > αn] ≤ E [Sn]

αn
=
p

α
,

while the application of Chebshev inequality gives

P [Sn > αn] = P [Sn − pn > (α− p)n]

≤ P [|Sn − pn| > (α− p)n]

≤ E
[
|Sn − pn|2

]

(α− p)2n2

=
p(1− p)

(α− p)2n.
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This example shows that we can have a better bound (order of 1/n rather than a constant order)
by Chebshev inequality. As can be seen later, by one of the main results in this lecture – Hoeffding
inequality, we can establish a tail bound that decays exponentially fast.

There is a natural way to extend the Markov inequality to random variables with higher-order
moments. For instance, if E

[
|X − E [X] |k

]
exists for some k > 1, then an application of the Markov

inequality to the random variable |X − E [X] |k yields that

P [|X − E [X] | > t] ≤ E
[
|X − E [X] |k

]

tk
.

Of course, we can use other functions rather than a single moment of the random variable. The
tight bounds that will be established next are indeed based on the moment generating function
(MGF, a mixture of all moments),

E
[
eλ(X−E[X])

]
.

In the same spirit of the Markov or Chebshev inequality, we have

P [X − E [X] > t] = P
[
eλ(X−E[X]) > eλt

]
≤ e−λtE

[
eλ(X−E[X])

]
, λ > 0.

Note that in the above inequality, there is a free parameter λ > 0 to choose. The Laplace transform
method or Chernoff method chooses λ in an interval [0, b] (b can be infinite or finite up to the bound
of moment generating function) such that the righthand side is minimized, leading to

P [X − E [X] > t] ≤ inf
λ∈[0,b]

e−λtE
[
eλ(X−E[X])

]
. (1.2)

It is easy to see that the key in the application of the Chernoff method is to estimate
E
[
eλ(X−E[X])

]
. Indeed, one advantage of using moment generating function over the all possible

polynomials is that the former one is a smooth function with the parameter λ and can be easily
manipulated. Next we will study two different distributions based on the different behaviors of
their moment generating functions, as well as the corresponding concentration inequalities.

1.3 Sub-Gaussian Distributions and Hoeffding Inequality

Let X ∼ N (µ, σ2) be a normal/Gaussian distribution of mean µ and variance σ2. We have

P [|X − µ| ≥ t] ≤ 2 exp

(
− t2

2σ2

)
(1.3)

Exercise 1.9 Prove (1.3).

The above inequality shows the tail bound of normal distribution decays exponentially fast. Thus,
it is interesting to see whether there are other distributions which exhibit similar behavior. The
answer is affirmative, and this family of distributions are known as sub-Gaussian distributions.
They are fully characterized by the behavior of their moment generating functions.

Definition 1.10 (Sub-Gaussian distribution) A random variable X with mean µ is sub-Gaussian
if there exists a positive number ν > 0 such that

E
[
eλ(X−µ)

]
≤ eλ2ν2/2 for all λ ∈ R. (1.4)
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Remark 1.11 Though here ν is NOT equivalent to the variance of a random variable, we can
sometimes think of it as the variance to get some intuition.

Example 1.12 (Gaussian distribution) Let X ∼ N (µ, σ2) be a Gaussian random variable.
One has

E [exp(λ(X − µ))] =
1√
2πσ

∫ ∞

−∞
exp(λx) exp(−x2/2σ2)dx

= exp(σ2λ2/2)
1√
2πσ

∫ ∞

−∞
exp

(
−1

2

(x
σ
− σλ

)2)
dx

= exp(σ2λ2/2). (1.5)

Thus X is sub-Gaussian with parameter ν = σ.

Example 1.13 (Rademacher variables) A Rademacher random variable ε takes the values {−1,+1}
in the same probability. By taking expectations and using the power series expansion, we have

E
[
eλX

]
=

1

2

(
e−λ + eλ

)

=
∞∑

k=0

λ2k

(2k)!

≤ 1 +
∞∑

k=1

λ2k

2kk!

= eλ
2/2,

which shows that ε is a sub-Gaussian variable with parameter ν = σ = 1.

Example 1.14 (Bounded random variables) Let X be zero-mean, and supported on a closed
interval [a, b]. We claim that

E
[
eλX

]
≤ eλ2(b−a)2/8.

In other words, X is sub-Gaussian with parameter (b − a)/2. To show this, define ψ(λ) (knowns
as log-moment generating function) as

ψ(λ) = logE
[
eλX

]
.

Then it suffices to show

ψ(λ) ≤ λ2(b− a)2

8
.

First, it is not hard to see that

ψ′(λ) =
E
[
XeλX

]

E [eλX ]
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and

ψ′′(λ) =
E
[
eλX

]
E
[
X2eλX

]
− (E

[
XeλX

]
)2

(E [eλX ])2

= E
[
X2 eλX

E [eλX ]

]
−
(
E
[
X

eλX

E [eλX ]

])2

.

It follows immediately that

ψ′(0) = 0.

Moreover, the expression for ψ′′(λ) implies that ψ′′(λ) is indeed the variance of X after a change
of measure. Thus, by the variational definition of variance, we have

ψ′′(λ) ≤ E

[(
X − b+ a

2

)2 eλX

E [eλX ]

]
≤ (b− a)2

4
, ∀λ ∈ R.

Also noting that ψ(0) = 0, we finally have

ψ(λ) = ψ(0) + ψ′(0)λ+
1

2
ψ′′(ξ)λ2 ≤ λ2(b− a)2

8
,

which completes the proof.

1.3.1 Hoeffding Inequality

By the Chernoff method (see (1.2)) we can show that sub-Gaussian random variables have the same
concentration properties as Gaussian random variables.

Theorem 1.15 (Hoeffding inequality) Let X (with E [X] = µ) be a sub-Gaussian random vari-
able with parameter ν. Then,

P [|X − µ| > t] ≤ 2e−
t2

2ν2 .

Proof: Inserting the sub-Gaussian property into(1.2) and optimizing the right hand side of the
above inequality with respect to λ > 0 yields that

P [X − µ > t] ≤ e−
t2

2ν2 .

Moreover, by considering −X, we can get

P [X − µ < −t] ≤ e−
t2

2ν2 ,

which concludes the proof.
Chernoff bounds can be easily extended to sums of independent random variables because of

the tensorization property of the moment generating functions in this situation, i.e., moment gen-
erating functions of sums of independent random variables become products of moment generating
functions.
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Proposition 1.16 Let X1, · · · , Xn be independent ν2k sub-Gaussian random variables. Then
∑n

k=1Xk

is a sub-Gaussian random variable with parameter ν =
∑n

k=1 ν
2
k .

Proof: The moment generating function
∑n

k=1Xk can be upper bounded as

E

[
exp

(
λ

(
n∑

k=1

Xk − E

[
n∑

k=1

Xk

]))]
= E

[
n∏

k=1

exp (Xk − E [Xk])

]
=

n∏

k=1

E [exp (Xk − E [Xk])]

≤
n∏

k=1

exp

(
λ2ν2k

2

)
= exp

(
λ2
∑n

k=1 ν
2
k

2

)
,

which completes the proof.
The follow general Hoeffding inequality follows immediately from Theorem 1.15 and Proposi-

tion 1.16.

Theorem 1.17 (General Hoeffding inequality) Suppose Xk, k = 1, · · · , n are independent
random variables, and Xk has mean µk and sub-Gaussian parameter νk. Then for all t ≥ 0, we
have

P

[∣∣∣∣∣
n∑

k=1

(Xk − µk)
∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2

2
∑n

k=1 ν
2
k

)
.

Example 1.18 Suppose Xk, k = 1, · · · , n are independent random variables satisfying E [Xk] = µk
and a ≤ Xk ≤ b. Then for all t ≥ 0, we have

P

[∣∣∣∣∣
n∑

k=1

(Xk − µk)
∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2

n(b− a)2

)
.

Example 1.19 Let us revisit Example 1.8 using the Hoeffding inequality, yielding

P [Sn > αn] = P

[
n∑

k=1

(Xk − p) ≥ (α− p)n
]
≤ exp

(
−(α− p)2n

2

)
,

which decreases faster than what Chebshev inequality gives.

Remark 1.20 It is evident that a key in establishing the general Hoeffding inequality is that mo-
ment generating function or log-moment (or cumulant) generating function tensorizes well for sum
of independent random variables.

1.3.2 Equivalent Characterizations of sub-Gaussian Distribution2

We have shown that the sub-Gaussian property implies the exponential decay of the tail prob-
ability. In fact, the converse direction also holds true. Moreover, there are several equivalent
characterizations of the sub-Gaussian distribution.

Theorem 1.21 Let X be a mean zero random variable. Then the following four statements are
equivalent.

2This part can be skipped if you find it difficult.
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1. X is sub-Gaussian satisfying,

E [exp (λX)] ≤ exp
(
c1λ

2ν2
)

for all λ ∈ R.

2. The tails of X satisfy

P [|X| ≥ t] ≤ 2exp

(
− t2

c2ν2

)
for all t ≥ 0.

3. The moments of X satisfy

‖X‖Lp := (E [|X|p])1/p ≤ c3ν
√
p for all p ≥ 1.

4. The moment generating function of X2 is bounded at some point3,

E
[
exp

(
X2

c4ν2

)]
≤ e.

Here, ci, i = 1, · · · , 4 are positive, absolute constants (see the notational remark in the syllabus).

Proof: We will proceed the proof in the following way: 1⇒ 2⇒ 3⇒ 4⇒ 1.

1⇒ 2: We have established this above using the Chernoff method.

2⇒ 3: W.l.og, assume c2 = 1. Then,

E [|X|p] = p

∫ ∞

0
tp−1P [|X| ≥ t] dt

≤ 2p

∫ ∞

0
tp−1exp

(
− t

2

ν2

)
dt

= pνp
∫ ∞

0
s
p
2
−1e−sds (letting s =

t2

ν2
)

= pνpΓ(p/2) (Γ(z) is a Gamma function)

≤ pνp (p/2)p/2 (Γ(z) ≤ zz, check this! ).

Taking the p-th root on both sides and noting that p1/p ≤ e (check this!) concludes the proof.

3⇒ 4: As above, we can assume c3 = 1. Then

E
[
exp

(
X2

c4ν2

)]
=
∞∑

p=0

E
[
X2p

]

p!cp4ν
2p
≤
∞∑

p=0

ν2p(2p)p

p!cp4ν
2p

≤
∞∑

p=0

(
2e

c4

)p
=

1

1− 2e/c4
≤ e (use p! ≥ (p/e)p, check this!)

provided c4 ≥ 2e/(1− 1/e).

3The constant e on the righthand side does not have any special meaning and can be replaced by any absolute
constant (similar to different scales of a norm).
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4⇒ 1: Again, we can assume c4 = 1. First noting that

λx ≤ λ2ν2

2
+

x2

2ν2
,

we have

E [exp (λX)] ≤ exp
(
λ2ν2/2

)
E
[
exp

(
X2/(2ν2)

)]
≤ exp

(
λ2ν2/2

)√
E [exp (X2/(ν2))]

≤ e1/2exp
(
λ2ν2/2

)
≤ exp

(
λ2ν2

)

provided |λ| ≥ 1/ν, where the second inequality follows from the Jensen inequality to the function√
x. Thus, it remains to discuss the case |λ| < 1/ν. In this situation, using the inequality ex ≤

x+ ex
2

(check this!) we have

E [exp (λX)] ≤ E [λX]︸ ︷︷ ︸
=0

+E
[
exp

(
λ2X2

)]
= E

[
exp

(
λ2X2

)]
= E

[(
exp

(
X2/ν2

))(λ2ν2)]

≤
(
E
[
exp

(
X2/ν2

)])λ2ν2

≤ exp
(
λ2ν2

)
,

where in the second inequality we utilize the Jensen inequality by noting that λ2ν2 < 1.

Exercise 1.22 (Khintchine inequality) Let Xk, k = 1, · · · , n be i.i.d, zero mean, unit variance
sub-Gaussian random variables with parameter ν2. Letting a = (a1, · · · , an) ∈ Rn, show that for
any p ∈ [2,∞) we have

‖a‖2 ≤ ‖
n∑

k=1

akXk‖Lp . ν
√
p‖a‖2.

(See the notational remark in the syllabus for the meaning of ..)

At the end of this section we present the following lemma, where a very useful decoupling
technique via the introduction of an independent random variable for auxiliary randomness is used
in the proof. See Chapter 6.1 of [2] for the general decoupling technique.

Lemma 1.23 Let X be mean zero sub-Gaussian random variable with parameter ν2. Then

E
[
exp

(
λX2

)]
≤ 1

[1− 2λν2]
1/2
+

,

where the equality holds for X ∼ N (0, ν2).

Proof: When X ∼ N (0, ν2), we can establish the equality by direction integral based on the pdf
of the Gaussian distribution.

For a general sub-Gaussian variable X, let Z be an independent N (0, 1) random variable.
Noting that

E [exp (λxZ)] = exp

(
λ2x2

2

)
,

we have

E
[
exp

(
λX2

)]
= E

[
exp

(√
2λXZ

)]
≤ E

[
exp

(
λν2Z2

)]
≤ 1

[1− 2λν2]
1/2
+

,

where the first inequality follows from the sub-Gaussian property of X and the second inequality
follows from the the fact Z is N (0, 1).

10



1.4 Sub-exponential Distributions and Bernstein Inequality

As we have seen from above, sub-Gaussian distribution is an extension of the Gaussian distribution.
In contrast, sub-exponential distribution is an extension of the squared Gaussian distribution. For
simplicity, let X ∼ N (0, 1) be standard normal distribution and let Z = X2 be χ2. Then,

E
[
eλ(Z−1)

]
=

{
e−λ√
1−2λ , if λ < 1

2

not exist, otherwise.

Thus, the moment generating function does not exist over the entire real line. Moreover, since
1− x > e−x

2−x (check this!) for all x < 1/2, one has

E
[
eλ(Z−1)

]
≤ e4λ2/2 for all |λ| < 1

4
.

Compared with (1.4), we see that similar bound only holds in a local neighborhood of zero. This
kind of condition defines the family of sub-exponential distributions.

Definition 1.24 (Sub-exponential distribution) A random variable X with mean µ is sub-
exponential if there are non-negative parameters (ν, b) such that

E
[
eλ(X−µ)

]
≤ eν2λ2/2 for all |λ| < 1/b.

Example 1.25 (χ2-distribution) We have shown that if X ∼ N (0, 1), then X2 is sub-exponential
with parameters (ν, b) = (2, 4).

Example 1.26 (Exponential distribution) Recall that X has exponential distribution with rate
a > 0 if the pdf of X is given by

f(x) =

{
ae−ax x ≥ 0

0 x < 0.

A direct calculation shows that E [X] = 1
a . For simplicity let a = 1. Then we have

E [exp (λ(X − 1))] =

∫ ∞

0
ex(λ−1)e−λdx =

{
e−λ
1−λ λ < 1

∞ λ ≥ 1.

The application of 1− x > e−x
2−x for x < 1/2 yields that

E [exp (λ(X − 1))] ≤ eλ2 for all |λ| < 1

2
.

Bernstein condition based on the moments of X provides an indirect way to verify the sub-
exponential property. More precisely, let X be random variable with mean µ and variance σ2. We
say Bernstein’s condition with parameter b holds if

∣∣∣E
[
(X − µ)k

]∣∣∣ ≤ 1

2
k!σ2bk−2 for k = 3, 4, · · ·

11



Lemma 1.27 If X satisfies the Bernstein condition, then X is sub-exponential with parameters
(
√

2σ, 2b).

Proof: We have

E
[
eλ(X−µ)

]
=

∞∑

k=0

E
[
λk(X − µ)k

]

k!

≤ 1 +
σ2λ2

2
+
σ2λ2

2

∞∑

k=1

(|λ|b)k

= 1 +
σ2λ2

2
+

σ2λ2|λ|b
2(1− |λ|b)

(
∀ |λ| < 1

b

)

= 1 +
σ2λ2/2

1− |λ|b

≤ e
σ2λ2/2
1−|λ|b (1.6)

≤ e
σ2(
√
2λ)2

2 ∀ |λ| ≤ 1

2b
,

which implies X is sub-exponential with parameters (
√

2σ, 2b).

Exercise 1.28 Let X be a random variable with E [X] = µ. Suppose |X − µ| ≤ b. Show that X
satisfies the Bernstein condition.

1.4.1 Bernstein Inequality

For sub-exponential distributions we can establish the Bernstein tail, which mixes the Gaussian
tail and the exponential tail.

Theorem 1.29 (Bernstein inequality) Suppose X is a sub-exponential variable with parameters
(ν, b). Then

P [|X − µ| > t] ≤ 2 exp

(
−1

2
min

(
t2

ν2
,
t

b

))
=

{
2e−

t2

2ν2 , if 0 ≤ t ≤ ν2

b

2e−
t
2b if t > ν2

b .

Proof: We assume without loss of generality µ = 0. The application of the Chernoff approach
yields that

P [X − µ > t] ≤ e−λtE
[
eλX

]
≤ e−λt+ν2λ2/2, ∀0 < λ ≤ 1/b.

Optimizing the right hand side with respect to λ over (0, 1/b] gives the one-sided tail bound.
Consider −X for the other tail bound.

Example 1.30 Let X be a random variable such that |X − µ| ≤ b. We know that it is also sub-
exponential with parameters (

√
2σ, b) where σ is the variance of X. Then the Bernstein inequality

implies that

P [|X − µ| > t] ≤
{

2e−
t2

4σ2 , if 0 ≤ t ≤ σ2

b

2e−
t
2b if t > σ2

b ,

12



while the application of the Hoeffding type bound gives

P [|X − µ| > t] ≤ 2e−
t2

2b2 .

It is evident that when t is sufficiently large, the Hoeffding type bound is better than the Bernstein
type bound (not a very useful conclusion since it requires t ≥ b). However, it is worth noting that
if t is small, the Bernstein type bound might be better than the Hoeffding type bound since it is
possible that σ2 � b2.

For sub-exponential variable satisfying the Bernstein condition, we can actually establish the
following slightly improved bound

P [|X − µ| > t] ≤ 2exp

(
− t2

2(σ2 + bt)

)
. (1.7)

Exercise 1.31 Prove(1.7). (Hint: Apply the Chernoff method to the inequality (1.6) directly.)

Proposition 1.32 Suppose that Xk, k = 1, · · · , n are n independent variables, and that Xk is
sub-exponential with parameters (νk, bk). Then

∑n
k=1(Xk − µk) is sub-exponential with parameters

(ν∗, b∗), where

ν2∗ =
n∑

k=1

ν2k and b∗ = max
1≤k≤n

bk.

Moreover, if Xk, k = 1, · · · , n are i.d.d sub-exponential with parameters (ν, b), then
∑n

k=1(Xk −µ)
is sub-exponential with parameters (

√
nν, b).

Proof: The moment generating function of
∑n

k=1(Xk − µk) can be bounded as follows

E

[
exp

(
λ

n∑

k=1

(Xk − µk)
)]

=

n∏

k=1

E [exp (λ(Xk − µk))] ≤
n∏

k=1

exp
(
λ2ν2k/2

)
,

where the inequality is valid for all λ < (maxk bk)
−1.

The following general Bernstein inequality follows immediately from the last proposition.

Theorem 1.33 (General Bernstein inequality) Suppose that Xk, i = 1, · · · , n are n indepen-
dent variables, and that Xk is sub-exponential with parameters (νk, bk). Then,

P

[∣∣∣∣∣
n∑

k=1

(Xk − µk)
∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−1

2
min

(
t2

ν2∗
,
t

b∗

))
=





2e
− t2

2ν2∗ , if 0 ≤ t ≤ ν2∗
b∗

2e−
t

2b∗ if t > ν2∗
b∗
,

where

ν2∗ =

n∑

k=1

ν2k and b∗ = max
1≤k≤n

bk.

13



By last theorem, we have

P

[∣∣∣∣∣
1√
n

n∑

k=1

(Xk − µ)

∣∣∣∣∣ ≥ t
]
≤





2e−
t2

2ν2 0 ≤ t ≤
√
nν2

b

2e−
√
nt
2b t >

√
nν2

b .

Thus, 1√
n

∑n
k=1(Xk −µ) also exhibits two types of tail bounds: Gaussian tail and exponential tail.

It is clear that the Gaussian tail region 0 ≤ t ≤
√
nν2

b increases linearly with respect to
√
n. Thus,

the exponential tail in the Bernstein inequality does not contradicts the central limit theorem.

Example 1.34 Let Zk, k = 1, · · · , n be i.i.d Chi-square variables. Noting that Zk is sub-exponential
with parameters (2, 4), there holds

P

[∣∣∣∣∣
1

n

n∑

k=1

(Zk − 1)

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−n

8
min

(
t2, t

))
.

1.4.2 Equivalent Characterizations of sub-Exponential Distribution4

Under a generalized definition of sub-exponential distributions (in for example High-dimensional
probability: An introduction with applications in data science by Roman Vershynin), we may es-
tablish the following equivalence.

Theorem 1.35 Let X be a mean zero random variable. Then the following four statements are
equivalent.

1. X is sub-exponential satisfying,

E [exp (λX)] ≤ exp
(
c1λ

2ν2
)

for all |λ| ≤ c′1
ν
. (1.8)

Note that if X satisfies Definition 1.24, then it will satisfy (1.8) with max(ν, b). However, the
resulting Bernstein inequality will be weaker since both ν and b will be replaced by max(ν, b).

2. The tails of X satisfy

P [|X| ≥ t] ≤ 2exp

(
− t

c2ν

)
for all t ≥ 0.

3. The moments of X satisfy

‖X‖Lp = (E [|X|p])1/p ≤ c3νp for all p ≥ 1.

4. The moment generating function of |X| is bounded at some point5,

E
[
exp

( |X|
c4ν

)]
≤ e.

Here, ci, i = 1, · · · , 4 and c′1 are positive, absolute constants.

Proof: We will proceed the proof in the following way: 2⇒ 3⇒ 4⇒ 2 and 1⇔ 3.

4This part can be skipped if you find it difficult.
5The constant e on the righthand side does not have any special meaning and can be replaced by any absolute

constant (similar to different scales of a norm).
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2⇒ 3: W.l.o.g, we assume c2 = 1. Then,

E [|X|p] = p

∫ ∞

0
tp−1P [|X| ≥ t] dt

≤ 2p

∫ ∞

0
tp−1exp (−t/v) dt

= 2pνpΓ(p)

≤ 2pνppp.

Taking a p-th root on both sides yields the result.

3⇒ 4: As above we assume c3 = 1. Then,

E
[
exp

(
X

c4ν

)]
=
∞∑

p=0

E [|X|p]
p!cp4ν

p
≤
∞∑

p=0

(νp)p

p!cp4ν
p
≤
∞∑

p=0

(
e

c4

)p
=

1

1− e/c4
≤ e

provided c4 ≥ e/(1− 1/e).

4⇒ 2: Assume c4 = 1. Applying the Markov inequality to eX/ν , it is easy to see that

P [X ≥ t] ≤ e1−t/ν .

With the same result for the negative tail, we have

P [|X| ≥ t] ≤ min(2e1−t/ν , 1) ≤ 2exp

(
− 2t

5ν

)
,

where in the second inequality we choose a constant c such that both 2e1−t/ν ≤ 2e−ct/ν when t is
greater than some threshold and 2e−ct/ν ≥ 1 when t is greater than the same threshold.

1⇒ 3 Using the numerical inequality |x|p ≤ pp(ex + e−x) for all x and p > 0 (check this!) with

x =
c′1X
ν and then taking the expectation yields

E
[∣∣∣∣
c′1X
ν

∣∣∣∣
p]
≤ E

[
pp
(

exp

(
c′1X
ν

)
+ exp

(−c′1X
ν

))]

≤ 2ppexp

(
c1

(c′1)
2

ν2
ν2
)
,

which gives 3 after simplification.

3⇒ 1 Assume c3 = 1 for simplicity. By Taylor’s expansion we have

E [exp (λX)] = 1 + E [λX] +
∞∑

p=2

λpE [Xp]

p!

≤ 1 +
∞∑

p=2

(λpν)p

p!
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≤ 1 +

∞∑

p=2

(λeν)p (use p! ≥ (p/e)p)

= 1 +
(λeν)2

1− λeν
≤ 1 + 2(λeν)2 (assume λeν ≤ 1/2)

≤ exp
(
2(λeν)2

)
,

which concludes the proof with c1 = 2e2 and c′1 = 2e.

1.5 Bounded Differences Inequality

In this section, we make our first attempt to extend the concentration inequalities to nonlinear
functions of independent random variables f(X1, · · · , Xn). The idea is overall similar to that for
the tensorization of variance in Section 1.1: Expressing f(X1, · · · , Xn) as an incremental or sum
form and mimic the arguments for sum function. To this end, we need the notion of conditional
expectation and martingale. Recalling the notation of Dk in Section 1.1, the martingale structure
enables us to establish the sub-Gaussian tail once they are bounded.

Theorem 1.36 (Azuma-Hoeffding tail bound) Let {Dk}nk=1 be the martingale difference se-
quence defined in (1.1). Suppose that Ak ≤ Dk ≤ Bk almost surely for all k ≥ 1, where Ak and Bk
are functions of X1, · · · , Xk−1. If Bk −Ak ≤ Lk, then for all t ≥ 0, we have

P

[∣∣∣∣∣
n∑

k=1

Dk

∣∣∣∣∣ ≥ t
]
≤ 2e

− 2t2∑n
k=1

L2
k

Proof: Noting that E [Dk|X1, · · · , Xk−1] = 0, repeating the argument in Example 1.14 for a
conditional expectation yields that

E
[
eλDk |X1, · · · , Xk−1

]
≤ exp

(
λ2(Bk −Ak)2

8

)
≤ exp

(
λ2L2

k

8

)
(1.9)

Consequently,

E
[
eλ

∑n
k=1Dk

]
= E

[
E
[
eλ

∑n
k=1Dk |X1, · · · , Xn−1

]]

= E
[
eλ

∑n−1
k=1 DkE

[
eλDn |X1, · · · , Xn−1

]]

≤ eλ2L2
n/8E

[
eλ

∑n−1
k=1 Dk

]
.

Thus, iterating this procedure yields E
[
eλ

∑n
k=1Dk

]
≤ eλ2

∑n
k=1 L

2
k/8, which means that

∑n
k=1Dk is

sub-Gaussian with parameter ν2 =
∑n
k=1 L

2
k

4 , and an application of the former Hoeffding inequality
yields the desired tail bound.

Remark 1.37 There are two key ingredients in the above proof: one is the sub-Gaussian type
property but for the conditional expectation; the other one is the tensorization property of the
moment generating function but for martingale difference sequence.
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Exercise 1.38 Write out the details for the proof of (1.9).

Since Azuma-Hoeffding inequality actually shows the concentration of f(X1, · · · , Xn) around its
mean with the proviso thatDk are bounded, a natural question will be for which f the corresponding
Dk are bounded. Next we are going to show that this is the case if f does not fluctuate with each ar-
gument too much, leading to the bounded difference inequality, i.e., the McDiarmid inequality. This
result reveals a connection between stability and concentration: if a function f(x1, · · · , xn) is not
too sensitive to any of its coordinates xi, then it is anticipated that f(X1, · · · , Xn) (Xi, i = 1, · · · , n
are independent or weakly independent) is close to its mean. This is also the first concentration re-
sult in this course that is beyond the sum of independent random variables, as well as a benchmark
concentration inequality we will revisit a few times.

Theorem 1.39 (McDiarmid inequality/Bounded difference inequality) Let Xk, k = 1, · · · , n
be independent random variables taking values in X , where X is the sample space. Suppose that a
function f : X n → R satisfies the bounded difference property

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ Lk

with parameters (L1, · · · , Ln) for all x1, · · · , xn, x′k ∈ X .Then

P [|f(X)− E [f(X)] | ≥ t] ≤ 2e
− 2t2∑n

k=1
L2
k .

Proof: Define Dk as in (1.1). By the last theorem we only need to show Dk is bounded. To this
end, define

Ak = inf
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− Ek:n

[
f(X1, · · · , Xk−1, Xk, Xk+1, · · · , Xn︸ ︷︷ ︸)

]

and

Bk = sup
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− Ek:n

[
f(X1, · · · , Xk−1, Xk, Xk+1, · · · , Xn︸ ︷︷ ︸)

]
.

It is clear that Ak ≤ Dk ≤ Bk almost surely. Moreover, we have

Bk −Ak = sup
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− inf
x∈X

Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]

≤ sup
x,y∈X

∣∣∣∣Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)

]
− Ek+1:n

[
f(X1, · · · , Xk−1, y,Xk+1, · · · , Xn︸ ︷︷ ︸)

]∣∣∣∣

= sup
x,y∈X

∣∣∣∣Ek+1:n

[
f(X1, · · · , Xk−1, x,Xk+1, · · · , Xn︸ ︷︷ ︸)− f(X1, · · · , Xk−1, y,Xk+1, · · · , Xn︸ ︷︷ ︸)

]∣∣∣∣

≤ Lk,

as desired.

Exercise 1.40 Show how to prove the result in Example 1.18 using the McDiarmid inequality.
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Example 1.41 (Rademacher complexity) Let {εk}nk=1 be an i.i.d sequence of Rademacher vari-
ables, namely

P [εk = 1] = P [εk = −1] =
1

2
,

and let ε = (ε1, · · · , εn). Given a subset A of Rn, define the random variable

Z = sup
a∈A

[
n∑

k=1

akεk

]
= sup

a∈A
[〈a, ε〉] .

The Rademacher complexity, denoted Rn(A), is defined as the expectation of Z,

Rn(A) = E [Z] .

Here the random variable Z and its expectation measures the size of A based on the Rademacher
sequence. Roughly speaking, it measures the “diameter” of the set in different directions randomly
and then computes the average. (when it is not clear how to do, try randomly). They also reflect
how strong the set A looks like a random set defined by the Rademacher sequence. For example, if
A = {1,−1}n, then it is equal to ε in certain sense.

We want to show that the McDiarmid inequality can be used to establish the concentration of
Z. Define

f(x1, · · · , xn) = sup
a∈A

[
n∑

k=1

akxk

]
, xk ∈ {1,−1}.

it suffices to show that f satisfies the bounded difference property. To this end, we have

f(x1, · · · , xk−1, xk, xk+1, xn)− f(x1, · · · , xk−1, x′k, xk+1, xn)

= sup
a∈A

[
n∑

k=1

akxk

]
− sup
a∈A



k−1∑

j=1

ajxj + akx
′
k +

n∑

j=k+1

ajxj




≤ sup
a∈A



(

n∑

k=1

akxk

)
−



k−1∑

j=1

ajxj + akx
′
k +

n∑

j=k+1

ajxj






= sup
a∈A

ak(xk − x′k)

≤ 2 sup
a∈A
|ak|,

where the last line follows from the fact xk, x
′
k ∈ {1,−1}. Similarly, we have

f(x1, · · · , xk−1, x′k, xk+1, xn)− f(x1, · · · , xk−1, xk, xk+1, xn) ≤ 2 sup
a∈A
|ak|.

Consequently,

|f(x1, · · · , xk−1, x′k, xk+1, xn)− f(x1, · · · , xk−1, xk, xk+1, xn)| ≤ 2 sup
a∈A
|ak|.

18



Thus, by the McDiarmid inequality we can see that Z is sub-Gaussian with parameter ν2 =∑n
k=1 supa∈A |ak|2. Later, we will show that this parameter can be sharpened to supa∈A

∑n
k=1 |ak|2.

To some extend, this has motivated the development of other machinaries for establishing the con-
centration inequality. In order to achieve the goal, we need to exploit more structure of f , for
example the convexity of it.

Example 1.42 Let Xk, k = 1, · · · , n be bounded random vectors in Rd satisfying E [Xk] = 0 and
‖Xk‖2 ≤ B. We want to study the concentration of

∥∥∥∥∥
1

n

n∑

k=1

Xk

∥∥∥∥∥
2

around the mean E
[∥∥ 1

n

∑n
k=1Xk

∥∥
2

]
. Let f(x1, · · · , xn) =

∥∥ 1
n

∑n
k=1 xk

∥∥
2
, where xk ∈ Rn. Then, by

triangular inequality

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ 1

n
‖xk − x′k‖2 ≤

2B

n
.

Thus, the application of the bounded difference inequality yields that

P

[∣∣∣∣∣

∥∥∥∥∥
1

n

n∑

k=1

Xk

∥∥∥∥∥
2

− E

[∥∥∥∥∥
1

n

n∑

k=1

Xk

∥∥∥∥∥
2

]∣∣∣∣∣ ≥ t
]
≤ 2exp

(
− nt

2

2B2

)
.

If we further assume E
[
‖Xk‖22

]
≤ σ2. Then

E

[∥∥∥∥∥
1

n

n∑

k=1

Xk

∥∥∥∥∥
2

]
≤


E



∥∥∥∥∥

1

n

n∑

k=1

Xk

∥∥∥∥∥

2

2






1/2

=

(
1

n2

n∑

k=1

E
[
‖Xk‖22

]
)1/2

≤ σ√
n
.

Consequently, we have

P

[∥∥∥∥∥
1

n

n∑

k=1

Xk

∥∥∥∥∥
2

≥ σ√
n

+ t

]
≤ 2exp

(
− nt

2

2B2

)
.

Remark 1.43 The bounded difference inequality is very useful and the next two lectures are essen-
tially about generalizing the bounded different inequality by considering different f and (X1, · · · , Xn).

1.6 Two Simple Applications

1.6.1 Random Game

Suppose you are playing a very simple game with your friend and decide whether a coin is in his
left or right hand after a number of queries with him. In each query, he will give you an answer.
However, he only gives you the right one with probability 1

2 +δ for a small δ > 0. Thus, if you make
a decision after only one query by using his answer, this is pretty much equivalent to a random
guess since δ is small. Here is strategy that can guarantee a correct decision with high probability:
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query your friend n times and then make a majority vote. Then we can show that by doing so you
can have the correct answer with probability 1− ε provided

n ≥ 1

2δ2
log

(
1

ε

)
. (1.10)

To show this, let Xk be random variable corresponding to the k-th query, defined as

Xk =

{
1 wrong answer is given

0 correct answer is given.

Consequently,

P [Xk = 1] =
1

2
− δ and P [Xk = 0] =

1

2
+ δ.

Moreover, letting Sn =
∑n

k=1Xk, it suffices to bound the probability

P
[
Sn ≥

n

2

]
.

First we have E [Sn] = (12 − δ)n. Moreover, since Xk ∈ [0, 1], it follows from the (one sided)
Hoeffding inequality (see Example 1.18) that

P
[
Sn ≥

n

2

]
= P [Sn − E [Sn] ≥ δn] ≤ exp

(
−2δ2n

)
.

At last, it is not hard to see that the righthand side of the above inequality is smaller than ε as
long as (1.10) is satisfied.

1.6.2 Random Projection and Dimension Reduction

Suppose there are n vectors {x1, · · · , xn} in Rd. If the data dimension d is too large, it might be
expensive to store and manipulate the data. Thus, we want to project these vectors onto a lower
dimensional space while preserve certain essential features.

Let P ∈ Rm×d be a projection matrix which maps each vector xi to a m dimensional vector
Pxi. We are interested in those projections that can approximately preserve the pairwise distance
of the vectors. More precisely, given some tolerance δ ∈ (0, 1), we hope that:

(1− δ)‖xi − xj‖22 ≤ ‖Pxi − Pxj‖22 ≤ (1 + δ)‖xi − xj‖22, for all xi 6= xj . (1.11)

The problem of finding a projection which satisfies the condition (1.11) is typically known as the
Johnson-Lindenstrauss embedding. Constructing such a projection which can satisfy the condition
with probability at least 1− ε turns out to be straightforward as long as the projected dimension
is lower bounded as

m & δ−2 log
(n
ε

)
, (1.12)

with the projection matrix given by

P = A/
√
m, where the entries of A are i.i.d N (0, 1) entries. (1.13)
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Let ak, k = 1, · · · ,m denote the k-th row of A. For any fixed vector x ∈ Rd of unit norm (i.e.,
‖x‖2 = 1), by the basic property of Gaussian distribution, we have that aTk x ∼ N (0, 1), so |aTk x| is
a Chi-square random variable. Moreover, there holds

E
[
‖Px‖22

]
=

1

m
E

[
m∑

k=1

|aTk x|2
]

= 1.

Thus by the Bernstein tail bound in Example 1.34, we have

P
[∣∣‖Px‖22 − 1

∣∣ ≥ δ
]

= P

[∣∣∣∣∣
1

m

m∑

k=1

|aTk x|2 − 1

∣∣∣∣∣ ≥ δ
]
≤ 2exp

(
−mδ

2

8

)
, for δ ∈ (0, 1). (1.14)

Note that (1.11) is equivalent to

∣∣∣∣∣

∥∥∥∥P
xi − xj
‖xi − xj‖2

∥∥∥∥
2

2

− 1

∣∣∣∣∣ ≤ δ, for all xi 6= xj .

Therefore, for the construction of P in (1.13), the utilization of (1.14) yields that

P

[∣∣∣∣∣

∥∥∥∥P
xi − xj
‖xi − xj‖2

∥∥∥∥
2

2

− 1

∣∣∣∣∣ ≥ δ for some xi 6= xj

]
≤ 2

(
n

2

)
exp

(
−mδ

2

8

)
≤ ε

provided (1.12) holds. In other words, the approximate isometry property (1.11) can be guaranteed
with high probability if projecting the data onto a lower dimension via Gaussian random projection.

Reading Materials

[1] Martin J. Wainwright, High-dimensional statistics – A non-asymptotic viewpoint, Chapters
2.1 and 2.2.

[2] Roman Vershynin, High-dimensional probability: An introduction with applications in data
science, Chapters 2.5, 2.6, 2.7 and 2.8.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 2: Herbst Argument and Entropy Method

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/03/19)

Recap and Motivation: In Lecture 1 we have discussed the sub-Gaussian and sub-exponential
distributions and the corresponding tail bounds for sums of independent random variables and
functions satisfying the bounded different property. Our next goal is to extend the concentration
results to other interesting functions. We will restrict our attention to the sub-Gaussian type tails
while some of the techniques may also be applicable for establishing the Bernstein type bound.

Define the log-moment (or cumulant) generating function of a random variable X as

ψ(λ) = logE [exp (λ(X − E [X]))] . (2.1)

The sub-Gaussian property can be equivalently expressed as

ψ(λ) . λ2ν2 for all λ ∈ R. (2.2)

By the Chernoff bound we know that the sub-Gaussian property immediately implies a Gaussian
tail bound (they are indeed equivalent). Moreover, the sub-Gaussian property can be established
for sums of independent random variables and functions obeying the bounded difference inequality.
As already seen, the proofs rely essentially on the tensorization property (or a martingale difference
sequence variant) of the log-moment generating function defining the sub-Gaussian property, i.e.,

logE

[
exp

(
λ

n∑

k=1

(Xk − E [Xk])

)]
≤

n∑

k=1

logE [exp (λ (Xk − E [Xk]))] .

However, for more complicated functions f(X1, · · · , Xn) arising from the applications than
sums of independent random variables, the above tensorization property hardly holds. That is, the
sub-Gaussian property in terms of the (log-)moment generating function overall does not tensorize
well. To mitigate this issue, one idea is to introduce an alternative formulation of the sub-Gaussian
property that behaves well under tensorization.

In this lecture we will study the sub-Gaussian property based on certain entropy function and
establish a concentration inequalities for more general f . To motivate this, let us recap the calculus
method that is used in the proof of the sub-Gaussian property for bounded random variables. First,
a simple calculation yields that

ψ(0) = 0 and ψ′(0) = 0.

Thus in order to establish the sub-Gaussian property (2.2), it suffices to show that

ψ′′(λ) . ν2 for all λ ∈ R.

Noting that (2.2) is equivalent to

ψ(λ)/λ . λν2 for all λ ∈ R,
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it also suffices to show that

d

dλ
(ψ(λ)/λ) . ν2. (2.3)

Though this is a trivial reformulation, it will lead to a more powerful method for proving concen-
tration inequalities. Moreover, it turns out that (2.3) can be related to a type of entropy function
that tensorizes well.

Agenda:

• Entropy

• Herbst argument and tensorization

• Modified log-Sobolev inequality and entropy method

• Gaussian concentration

2.1 Entropy

Definition 2.1 The entropy of a positive random variable Z, denoted Ent [Z], is defined as

Ent [Z] = E [φ(Z)]− φ(E [Z]) = E [Z logZ]− E [Z] logE [Z],

where φ(t) = t log t.

Remark 2.2 Note that the entropy defined here should not be confused with the Shannon entropy
which is roughly about on average how many bits are needed to store a random variable.

Exercise 2.3 Show that φ(t) = t log t is a convex function and thus Ent [Z] ≥ 0.

Remark 2.4 Given any convex function φ(t), we can define the Bregman distance (divergence) as

D(y‖x) = φ(y)− φ(x)− φ′(x)(y − x).

With this notion, it is easy to see that

Ent [Z] = E [D(Z‖E [Z])] (2.4)

for φ(t) = t log t. That is, Ent [Z] is the average Bregman distance between Z and E [Z]. Moreover,
by simple calculus, one has

Ent [Z] = inf
t>0

E [D(Z‖t)] . (2.5)

Note that the definition of entropy in (2.4) is overall similar to that of variance,

Var [Z] = E
[
(Z − E [Z])2

]
,

but with a different metric. Thus, it is reasonable that entropy can tensorize well like variance.
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Example 2.5 (Entropy of exponential of Gaussian) Let X ∼ N (0, σ2). We have

Ent
[
eλX

]
= E

[
eλX log

(
eλX

)]
− E

[
eλX

]
log
(
E
[
eλX

])

= E
[
λXeλX

]
− E

[
eλX

]
log

(
e
λ2σ2

2

)

=
1

2
λ2σ2E

[
eλX

]
for all λ ∈ R,

where we can use dE
[
eλX

]
/dλ = E

[
XeλX

]
to calculate the first term in the second line.

Exercise 2.6 Show that Ent
[
eλ(X+c)

]
= eλc · Ent

[
eλX

]
for any c ∈ R.

Lemma 2.7 (Entropy of exponential and MGF) Let ψ(λ) be the log-moment generating func-
tion defined in (2.1). We have

Ent
[
eλX

]

E [eλX ]
= λψ′(λ)− ψ(λ).

Proof: The result follows from the definition and E
[
XeλX

]
= d

dλE
[
eλX

]
. Note that X is not

necessarily mean zero though it is centered when defining ψ(λ).

Example 2.8 (Entropy of exponential of bounded random variable) Let X be mean zero
and supported on [a, b]. By Lemma 2.7, we have

Ent
[
eλX

]

E [eλX ]
= λψ′(λ)− ψ(λ) = [λψ′(λ)− ψ(λ)]− [0 · ψ′(0)− ψ(0)]

=

∫ λ

0
ξψ′′(ξ)dξ

≤ (b− a)2

4

∫ λ

0
ξdξ

=
λ2(b− a)2

8
,

where the inequality follows from the bound for ψ′′(ξ), see Example 1.13 of Lecture 1. Thus,

Ent
[
eλX

]
≤ λ2(b− a)2

8
E
[
eλX

]
.

Lemma 2.9 (Variational formula of entropy) Let Z ≥ 0 be a nonnegative random variable.
Then,

Ent [Z] = sup
{
E [ZX] : X is a random variable satisfying E

[
eX
]

= 1
}

= sup{E [Z (log Y − logE [Y ]) : Y ≥ 0]}.

Proof: Note if letting X = log (Z/E [Z]), then it is not hard to show that E
[
eX
]

= 1 and
E [ZX] = Ent [Z]. Thus, it suffices to show that

Ent [Z]− E [ZX] ≥ 0

3



for all X satisfying E
[
eX
]

= 1. Note that Ent [Z]− E [ZX] can be expressed as

Ent [Z]− E [ZX] = E
[(
e−XZlog

(
e−XZ

))
eX
]
− E

[(
e−XZ

)
eX
]

logE
[(
e−XZ

)
eX
]
.

Since E
[
eX
]

= 1, if we define the new probability dQ = eXdP where P is the probability distribution
defining Z and X, then Ent [Z] − E [ZX] is indeed the entropy of e−XZ under the probability
distribution, i.e.,

Ent [Z]− E [ZX] = EntQ
[
e−XZ

]
≥ 0, (2.6)

where the inequality follows from the nonnegative property of entropy.
The second equality follows simply from the fact that

E
[
eX
]

= 1⇔ ∃ Y ≥ 0 such that X = log Y − logE [Y ] .

The proof is complete now.

Lemma 2.10 (Exchangeable bound for entropy) Let Z and Z ′ be two i.i.d positive random
variables. Then,

Ent [Z] ≤ 1

2
E
[
(Z − Z ′)(logZ − logZ ′)

]
.

In particular, for two i.i.d random variables X and X ′,

Ent
[
eX
]
≤ 1

2
E
[
(eX − eX′)(X −X ′)

]

Proof: By the definition of entropy, one has

Ent [Z] = E [Z logZ]− E [Z] logE [Z]

= E [Z logZ]− E [Z] logE
[
Z ′
]

≤ E [Z logZ]− E [Z]E
[
logZ ′

]

= E
[
Z(logZ − logZ ′)

]
.

Similarly, one has Ent [Z ′] ≤ E [Z ′(logZ ′ − logZ)] . Combining the them together yields the first
result and the second result follows immediately from the first one.

2.2 Herbst Argument and Tensorization

2.2.1 Herbst Argument

The examples above reveal a connection between Ent
[
eλX

]
and E

[
eλX

]
for certain sub-Gaussian

random variables. It turns out this relation can be used to define the sub-Gaussian property, which
follows from the Herbst argument.

Theorem 2.11 (Herbst) Suppose that

Ent
[
eλX

]
≤ λ2ν2

2
E
[
eλX

]
for all λ ≥ 0. (2.7)

Then X satisfies the bound

ψ(λ) = logE [exp (λ(X − E [X]))] ≤ 1

2
λ2ν2 for all λ ≥ 0. (2.8)
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Proof: The proof is indeed based on the argument sketched around (2.3). First note that

lim
λ→0

ψ(λ)

λ
= 0. (check this!)

Consequently,

ψ(λ)

λ
=

∫ λ

0

d

dξ

(
ψ(ξ)

ξ

)
dξ.

Moreover, condition (2.7) can be used to provide an upper bound for d
dξ

(
ψ(ξ)
ξ

)
since there holds

d

dξ

(
ψ(ξ)

ξ

)
=

1

ξ2
(
ξψ′(ξ)− ψ(ξ)

)
=

1

ξ2
Ent

[
eξX
]

E [eξX ]
≤ 1

ξ2
ξ2ν2

2
=
ν2

2
for all ξ ≥ 0,

where the second equality follows from Lemma 2.7 and the inequality follows from (2.7). Inserting
this bound into the integral yields that

ψ(λ)

λ
≤ λν2

2
⇒ ψ(λ) ≤ λ2ν2

2
,

as claimed.

Remark 2.12 The fact Ent
[
eλ(X+c)

]
= eλc · Ent

[
eλX

]
implies that if X satisfies (2.7), so does

X+c. That is why we do not need to center the random variable in (2.7), but are still able to obtain
a result for a centered random variable in (2.8). Indeed, the random variables we are interested are
in the form of f(X1, · · · , Xn) which are generally not mean zero.

The following proposition follows immediately from Theorem 2.11, showing the sub-Gaussian
property can be defined based on the relation between Ent

[
eλX

]
and E

[
eλX

]
.

Proposition 2.13 (sub-Gaussian property via Entropy) Suppose

Ent
[
eλX

]
≤ λ2ν2

2
E
[
eλX

]
for all λ ∈ R. (2.9)

Then, X is sub-Gassuain with parameter ν.

Exercise 2.14 Prove Proposition 2.13. (Hint: apply Theorem 2.11 to −X and −λ in the case
when (2.9) holds for λ ≤ 0.)

Remark 2.15 The above proposition provides a new perspective for sub-Gaussian distribution
through the comparison of entropy of exponential and MGF, which enables us to avoid bound-
ing MGF directly. This is very useful in establishing sub-Gaussian property of nonlinear functions
since entropy tensorizes well which allows the comparison of entropy of exponential and MGF in a
coordinate way.
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2.2.2 Tensorization of Entropy

The entropy has a nice tensorization property for functions of independent variables which enables
us to bound the entropy of random variables in the form of g(X1, · · · , Xn) in a coordinate-wise
manner. To present this property, let us first introduce a new notation. Let X1, · · · , Xn be
independent random variables. Given g : X n → [0,∞), we define Entk [g(X1, · · · , Xn)] as

Entk [g(X1, · · · , Xn)] = Ent [g(x1, · · · , xk−1, Xk, xk+1, · · · , xn)]|x1=X1,··· ,xk−1=Xk−1,xk+1=Xk+1,··· ,xn=Xn .

In other words, Entk [g(X1, · · · , Xn)] is the entropy of g(X1, · · · , Xn) with respect to the variable
to Xk only, while the others keep fixed. Note that Entk [g(X1, · · · , Xn)] is still a random variable,
a function of X1, · · · , Xk−1, Xk+1, · · · , Xn.

Theorem 2.16 (Tensorization of entropy) We have

Ent [g(X1, · · · , Xn)] ≤ E

[
n∑

k=1

Entk [g(X1, · · · , Xn)]

]
,

where X1, · · · , Xn are independent.

As already noted, entropy can be viewed as another expected quantity to reflect fluctuations of
random variables, and it is natural to anticipate entropy tensorizes similarly as variance (see Lec-
ture 1 for tensorization of variance). This property allows us to deduce a bound for functions of
independent random variables from bounds for functions of each individual random variable, thus is
very helpful for studying high dimensional problems. If we think Entk [·] as the way of quantifying
the random in the k-th mode (when average out the other random variables), the theorem implies
that the randomness of the joint distribution is less than or equal to the sum of the randomness
of all the modes. Compared to MGF, this property implies that for any form of g, we
can control the entropy of g(X1, · · · , Xn) by considering the entropy of each coordinate,
which means entropy tensorizes better than MGF. The proof of this theorem is based on
the variational form of entropy.

Proof: [Proof of Theorem 2.16] Let Z = g(X1, · · · , Xn) and define

Uk = logE [Z|X1, · · · , Xk]− logE [Z|X1, · · · , Xk−1] .

Then we have

Ent [Z] = E [Z (log (Z)− logE [Z])] =
n∑

k=1

E [ZUk] .

Thus, it suffices to show that E [ZUk|X1, · · · , Xk−1, Xk+1, · · · , Xn] ≤ Entk [Z]. To this end, let us
fix

X1, · · · , Xk−1, Xk+1, · · · , Xn

and consider

ZUk = Z (logE [Z|X1, · · · , Xk]− logE [Z|X1, · · · , Xk−1])
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as a function of Xk. Noting that EXk [E [Z|X1, · · · , Xk]] = E [Z|X1, · · · , Xk−1] due to the indepen-
dence of all the Xk, the application of Lemma 2.9 with respect to Xk immediately that

E [ZUk|X1, · · · , Xk−1, Xk+1, · · · , Xn] ≤ Entk [Z],

which completes the proof.

Exercise 2.17 Verify that the equality in the tensorization property holds for

g(X1, · · · , Xn) = exp

(
λ

n∑

k=1

Xk

)
,

where X1, · · · , Xn are independent.

Example 2.18 (Bounded difference inequality revisited) In this example, we are going to
show that the bounded difference inequality can be proved in an alternative way based on the Herbst
argument (Theorem 2.11) and the tensorization property (Theorem 2.16). Recall that a function f
satisfies the bounded difference property if

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ Lk
with parameters (L1, · · · , Ln) over the range of the independent random variables X = (X1, · · · , Xn).
Thus, when fixing X1, · · · , Xk−1, Xk+1, · · · , Xn, f(X1, · · · , Xn) can be viewed as a bounded random
variable which locates in an interval of length at most Lk. Then it follows from Example 2.8 that

Entk

[
eλf(X1,··· ,Xn)

]
≤ λ2L2

k

8
Ek
[
eλf(X1,··· ,Xn)

]
,

where Ek [·] means taking expectation with respect to Xk only. Furthermore, letting g(X1, · · · , Xn) =
eλf(X1,··· ,Xn), the tensorization property implies that

Ent
[
eλf(X1,··· ,Xn)

]
≤

n∑

k=1

λ2L2
k

8
E
[
Ek
[
eλf(X1,··· ,Xn)

]]

= λ2

(
n∑

k=1

L2
k

8

)
E
[
eλf(X1,··· ,Xn)

]
.

Thus, by the Herbst argument, we know that f(X1, · · · , Xn) is sub-Gaussian with parameter ν2 =∑n
k=1 L

2
k

4 and the tail bound in the bounded difference inequality follows immediately.

2.3 Modified Log-Sobolev Inequality and Entropy Method

As demonstrated in the last example, in order to apply the Herbst argument and the tensorization
property to establish the sub-Gaussian tail, it remains to bound Entk

[
eλf(X1,··· ,Xn)]. In a more

general setting, this can be achieved by the modified log-Sobolev inequality1 (MLS), which is
the last piece of the entropy method. In a nutshell, MLS controls the entropy of eλf(X) by the
fluctuation/gradient of the function f .

1Overall, Sobolev inequalities are a family of inequalities which control the energy of functions by that of their
derivatives.
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Lemma 2.19 (MLS) Let f : X → R be a single variable function. Define

D−f(x) = f(x)− inf
z∈X

f(z).

Then for any λ ≥ 0 we have

Ent
[
eλf(X)

]
≤ E

[
φ
(
λD−f(X)

)
eλf(X)

]

≤ 1

2
E
[
|λD−f(X)|2eλf(X)

]
.

where φ(x) = e−x + x− 1.

Proof: By (2.5), we have

Ent [Z] = inf
t>0

E [Z logZ − Z log t− Z + t] .

Thus, letting Z = eλf(X) yields that

Ent
[
eλf(X)

]
= inf

t>0
E
[
λf(X)eλf(X) − eλf(X) log t− eλf(X) + t

]

≤ E
[
λf(X)eλf(X) − eλf(X)log

(
eλ infz f(z)

)
−eλf(X) + eλ infz f(z)

]

= E
[{
λf(X)− λ inf

z
f(z)− 1 + e−λf(X)+λ infz f(z)

}
eλf(X)

]

= E
[
φ
(
λD−f(X)

)
eλf(X)

]
.

The second inequality in the lemma simply follows from the fact φ(x) ≤ 1
2x

2 for x ≥ 0.
When f : X n → R is a multivariable function, applying the MLS conditionally to each

Entk
[
eλf(X1,··· ,Xn)] leads to the following theorem which can be viewed as an generalization of

the bounded difference inequality.

Theorem 2.20 (General bounded difference inequality) Let x = (x1, · · · , xn) and define

D−k f(x) = f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− inf
z∈X

f(x1, · · · , xk−1, z, xk+1, · · · , xn),

D+
k (x) = sup

z∈X
f(x1, · · · , xk−1, z, xk+1, · · · , xn)− f(x1, · · · , xk−1, xk, xk+1, · · · , xn).

Let X1, · · · , Xn be i.i.d random variables. If
∑n

k=1 |D−k f(x)|2 ≤ ν21 , then we have

P [f(X1, · · · , Xn) ≥ E [f(X1, · · · , Xn)] + t] ≤ exp

(
− t2

2ν21

)

Similarly, if
∑n

k=1 |D+
k f(x)|2 ≤ ν22 , we have

P [f(X1, · · · , Xn) ≤ E [f(X1, · · · , Xn)]− t] ≤ exp

(
− t2

2ν22

)
.
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Proof: If we fix X1, · · · , Xk−1, Xk+1, · · · , Xn and consider f(X1, · · · , Xn) as a function of Xk,
the application of the MLS yields that

Entk

[
eλf(X1,··· ,Xn)

]
≤ 1

2
Ek
[
|λD−k f(X1, · · · , Xn)|2eλf(X1,··· ,Xn)

]
, λ ≥ 0.

By the tensorization property of entropy, we have

Ent
[
eλf(X1,··· ,Xn)

]
≤

n∑

k=1

E
[
Entk

[
eλf(X1,··· ,Xn)

]]

≤ 1

2
E

[
λ2

(
n∑

k=1

|D−k f(X1, · · · , Xn)|2
)
eλf(X1,··· ,Xn)

]

≤ λ2ν21
2

E
[
eλf(X1,··· ,Xn)

]
.

The upper tail bound follows immediately from the Herbst argument and the Chernoff method.
The lower tail bound can be established by considering −f .

Remark 2.21 Let

Dkf(x) = sup
z
f(x1, · · · , xk−1, z, xk+1, · · · , xn)− inf

z
f(x1, · · · , xk−1, z, xk+1, · · · , xn).

Note the tail bound obtained by the bounded difference inequality is of the order exp
(
−t2/∑n

k=1 ‖Dkf(x)‖2∞
)
,

while the tail bound established here is of the order exp
(
−t2/‖∑n

k=1 |Dkf(x)|2‖∞
)
. It is trivial that∥∥∑n

k=1 |Dkf(x)|2
∥∥
∞ ≤

∑n
k=1 ‖Dkf(x)‖2∞. Moreover, there are cases

∥∥∑n
k=1 |Dkf(x)|2

∥∥
∞ can be

sufficiently smaller than
∑n

k=1 ‖Dkf(x)‖2∞. Thus, the bounds of Theorem 2.20 are an improvement
over that in the bounded difference inequality. This is due to the fact entropy function tensorizes
better than the moment generating function.

Note that the upper and lower tail bounds here are essentially asymmetric: the upper bound is
controlled by

∑n
k=1 |D−k f(X)|2 while the lower bound is controlled by

∑n
k=1 |D+

k f(X)|2. There are
problems where it is may be not clear how to bound one of them. However, if the function f satisfies
a stronger condition, it is still possible to obtain a two-sided tail bound from the single bound of∑n

k=1 |D−k f(X)|2. The machinery needed to prove such bounds are discussed in the next lecture.

From the general bounded difference inequality we can obtain the following proposition which
is relatively easier to manage. Recall that a function f : X n → R is separately convex if for each
i = 1, · · · , n, it is a convex function of its i-th coordinate while the rest of the coordinates are fixed.

Proposition 2.22 Let Xk, k = 1, · · · , n be independent random variables taking values in an in-
terval [a, b] and let f : [a, b]n → R be a separately convex function which also satisfies the Lipschitz
condition |f(x)− f(y)| ≤ L‖x− y‖2 for all x, y ∈ [a, b]n. Then, for all t ≥ 0,

P [f(X1, · · · , Xn) ≥ E [f(X1, · · · , Xn)] + t] ≤ exp

(
− t2

2L2(b− a)2

)

Proof: For ease of presentation, we assume the partial derivatives of f exist (Otherwise we can
adopt a standard approximation argument). Letting x′k be the random variable at which

inf
z
f(x1, · · · , xk−1, z, xk+1, · · · , xn)

9



is achieved. Then it follows from the separately convex property of f that

D−k f(x) = f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− inf
z
f(x1, · · · , xk−1, z, xk+1, · · · , xn)

= f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)

≤ ∂kf(x)(xk − x′k). (use the separately convexity here)

It follows that

n∑

k=1

|D−k f(x)|2 ≤
n∑

k=1

∂2kf(x)(xk − x′k)2

≤
n∑

k=1

∂2kf(x)(b− a)2

= ‖∇f(x)‖22(b− a)2 ≤ L2(b− a)2,

where ‖∇f(x)‖2 ≤ L follows from the Lipschitz condition of f (check this!). The upper tail bound
then follows immediately from Theorem 2.20.

Remark 2.23 The lower tail cannot be established by considering −f since it is a concave function.

Example 2.24 (Sharper upper bounds on Rademacher complexity) Let us revisit Exam-
ple 1.43 of Lecture 1, which is about establishing an upper tail bound for

Z = sup
a∈A

[
n∑

k=1

akεk

]
,

where εk, k = 1, · · · , n are i.i.d Rademacher variables. Let

f(x1, · · · , xn) = sup
a∈A

[
n∑

k=1

akxk

]
, xk ∈ {1,−1}.

Since f is a supremum of a collection of linear function, it is a convex function and hence separately
convex. Moreover, it is not hard to show that (check this!)

|f(x1, · · · , xn)− f(x′1, · · · , x′n)| ≤ sup
a∈A
‖a‖2‖x− x′‖2,

where x = (x1, · · · , xn) and x′ = (x′1, · · · , x′n) That is, f is Lipschitz with parameter supa∈A ‖a‖2.
Thus, it follows from Proposition 2.22 that

P [f(ε1, · · · , εn) ≥ E [f(ε1, · · · , εn)] + t] ≤ exp

(
− t2

8 supa∈A ‖a‖22

)
.

Note that the quantity supa∈A ‖a‖22 (the squared Euclidean width of the set) used in the upper bound
here may be substantially than

∑n
k=1 supa∈A a

2
k established in Lecture 1.
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2.4 Gaussian concentration

Lastly, we present a classical concentration inequality of standard Gaussian random variables. The
proof of the inequality requires a type of Gaussian log-Sobolev inequality which is listed below
without proof. Interested readers are referred to Chapter 3.4 of [2] or Chapter 5.3 of [3] for a proof.

Lemma 2.25 (Gaussian log-Sobolev inequality) Let X1, · · · , Xn be a collection of n inde-
pendent standard Gaussian random variables, and let f : Rn → R be a continuously differentiable
function. Then

Ent
[
f2(X1, · · · , Xn)

]
≤ 2E

[
‖∇f(X1, · · · , Xn)‖22

]
.

To see why the above inequality is referred to as a type of log-Sobolev inequality, assume for
simplicity f is single variable function. Then by the chain rule we have

Ent
[
eλf(X)

]
≤ 1

2
E
[
|λf ′(X)|2eλf(X)

]
, for all λ ∈ R

which is analogous to the one give in Lemma 2.19, but with the discrete gradient replaced by the
calculus gradient. Similarly, when f is a multivariable function, we have (check this!)

Ent
[
eλf(X1,··· ,Xn)

]
≤ 1

2
E
[
‖λ∇f(X1, · · · , Xn)‖22 eλf(X1,··· ,Xn)

]
, for all λ ∈ R (2.10)

Theorem 2.26 Let X1, · · · , Xn be a collection of n independent standard Gaussian random vari-
ables. Let f : Rn → R be a Lipschitz function with parameter L > 0. That is, for any x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖2.

Then f(X1, · · · , Xn)− E [f(X1, · · · , Xn)] is sub-Gaussian with parameter ν2 = L2, and hence

P [|f(X1, · · · , Xn)− E [f(X1, · · · , Xn)]| ≥ t] ≤ 2exp

(
− t2

2L2

)
.

Proof: We may assume f is differentiable (otherwise we can use an approximation argument).
Then ‖∇f(X1, · · · , Xn)‖2 is bounded by L (check this!). It follows from (2.10) that

Ent
[
eλf(X1,··· ,Xn)

]
≤ λ2L2

2
E
[
eλf(X1,··· ,Xn)

]
.

Then claim follows immediately by the Herbst argument.

Example 2.27 (Gaussian complexity) Let X1, · · · , Xn be an i.i.d sequence of N (0, 1) variables.
Given a set A ∈ Rn, define the random variable

Z = sup
a∈A

[
n∑

k=1

akXk

]
= sup

a∈A
〈a,X〉 ,

where X = (X1, · · · , Xn). The Gaussian complexity, denoted Gn(A), is defined as the expectation
of Z,

Gn(A) = E [Z] ,

11



which is another way to measure the complexity of a set (cf. the Rademacher complexity).
Define f(x1, · · · , xn) = supa∈A [

∑n
k=1 akxk] . Since f is a Lipschitz function with parameter

supa∈A ‖a‖2 (check this!), by the Gaussian concentration inequality we know that Z = supa∈A 〈a,X〉
is sub-Gaussian with parameter ν2 = supa∈A ‖a‖22.

Example 2.28 (Singular values of Gaussian random matrices) Let A ∈ Rn×n be a random
Gaussian matrix whose entries obey the i.i.d standard Gaussian distribution. Let σk(A) be the k-th
largest singular value of A. By Weyl’s theorem (this can be found in any standard linear algebra
textbook), we have

|σk(A)− σk(A′)| ≤ ‖A−A′‖F .

That is, σk(A) is Lipschitz with parameter 1. Therefore, we can conclude that σk(A) is sub-Gaussian
with parameter ν2 = 1.

Reading Materials

[1] Martin Wainwright, High-dimensional statistics – A non-asymptotic viewpoint, Chapter 3.1.

[2] Ramon van Handel, Probability in High Dimension, Chapters 3.3, 3.4.

[3] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration inequalities: A nonasymp-
totic theory of independence, Chapters 5.3, 5.4, 6.1, 6.3, 6.4, 6.6.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 3: Lipschitz Concentration and Transportation Method

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/03/15)

Recap and Motivation: In this lecture, we take a reverse route by fixing the family of functions
and then asking for what kind of random variables concentration phenomena will display. In
particular, we will consider Lipschitz functions.

Definition 3.1 Letting (X , d) be a (measurable) metric space, we say a function f : X → R is
L-Lipschitz if |f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ X .

Remark 3.2 Note that in this lecture X can used to denote a single metric space or a product
metric space, which should be clear from its context. In addition, the Lipschitz condition is indeed
equivalent to f(x)− f(y) ≤ Ld(x, y) for all x, y ∈ X since d(x, y) = d(y, x).

In the last lecture we have already seen a result about concentration of Lipchitz functions - Gaussian
concentration. That is, letting X1, · · · , Xn be i.i.d standard Gaussian random variables taking
values in X = R, if f : Rn → R is a Lipschitz function with respect to the ‖ · ‖2 norm, then
f(X1, · · · , Xn) presents the Gaussian type concentration. It is natural to study the general principal
for the concentration phenomena of Lipschitz functions and answer the following question:

Given a Lipschitz function f under certain metric defined on
⊗n

k=1Xk, for what kind
of (X1, · · · , Xn) or under what probability measure on

⊗n
k=1Xk, f(X1, · · · , Xn) will be

sub-Gaussian?

As in the entropy method, there are two key ingredients in the analysis: 1) a new characteri-
zation of the sub-Gaussian property based on the Wasserstein distance (known as transportation
lemma), 2) a tensorization property (known as Marton theorem) which can transfer the problem
from the general n case to the n = 1 case.

In fact we can also express the bounded difference inequality as the concentration of Lipschitz
functions under a properly chosen metric. Let (X1, · · · , Xn) be a vector of independent random
variables taking values in

⊗n
k=1Xk := X1× · · · ×Xn. For any function f :

⊗n
k=1Xk → R satisfying

the bounded difference property

|f(x1, · · · , xk−1, xk, xk+1, · · · , xn)− f(x1, · · · , xk−1, x′k, xk+1, · · · , xn)| ≤ Lk,

f(X1, · · · , Xn) has the Gaussian type concentration. To rephrase this result into a concentration
result of Lipschitz functions, first define the following weighted Hamming metric on X1 × · · · × Xn,

dL(x, y) =
n∑

k=1

Lk1{xk 6=yk}, where 1{xk 6=yk} =

{
1 if xk 6= yk

0 if xk = yk.

Exercise 3.3 Verify that dL(·, ·) is a metric.
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Assuming f satisfies the bounded difference property, it follows that

f(x)− f(y) =

n∑

k=1

(f(x1, · · · , xk−1, xk, yk+1, · · · , yn)− f(x1, · · · , xk−1, yk, yk+1, · · · , yn))

≤
n∑

k=1

Lk1{xk 6=yk}

= dL(x, y).

That is, f is 1-Lipschitz under with respect to the metric dL. Therefore the bounded difference
inequality can be rephrased as: Assume f is 1-Lipschitz under with respect to the metric dL. Then
for any independent random variables X1, · · · , Xn, f(X1, · · · , Xn) is sub-Gaussian.

Agenda:

• KL divergence, Wasserstein distance

• Transportation lemma and tensorization

• Talagrand concentration inequality

• Short summary

3.1 KL Divergence, Wasserstein Distance

In this section we introduce two notions, KL divergence and Wasserstein distance, to measure the
divergence or distance between the two probability distributions. These two distances are not only
useful here but actually widely used in machine learning. Of course there are other divergence
measures which will be introduced in the due course.

3.1.1 KL Divergence

Definition 3.4 (Kullback-Leibler (KL) Divergence) Given two probability measures P and
Q, the KL divergence (or relative entropy) of Q with respect to P is defined as

D(Q‖P) =

{
EntP

[
dQ
dP

]
if Q� P

∞ otherwise,

where EntP [·] means computing the entropy (see Definition 2.1 of Lecture 2) of dQ/dP under the
probability distribution P.

Remark 3.5 The KL divergence quantifies the difference of P and Q using the randomness of
Q relative to P. Thus, KL divergence is also known as relative entropy. Given two probability
measures P and Q, Q� P means Q is absolutely continuous with respect to P, namely, there exists
a (real-valued) nonnegative random variable Y (x) with EP [Y ] =

∫
X Y dP = 1 such that

Q(A) = EP [Y 1A] for any measurable A.
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If P and Q have densities with respect to some underlying measure µ (e.g., take µ = P+Q), denoted
p(x) and q(x), then

Q(A) =

∫

A
q(x)µ(dx) =

∫

A

q(x)

p(x)
p(x)µ(dx) = EP

[
q(x)

p(x)

]
,

and thus Y can be chosen to be Y (x) = q(x)/p(x).

Remark 3.6 (Equivalent definition of KL-divergence) By the definition of entropy1, we have

D(Q‖P) = EP

[
dQ
dP

log
dQ
dP

]
− EP

[
dQ
dP

]
logEP

[
dQ
dP

]

= EQ

[
log

dQ
dP

]
. (3.1)

If both P and Q have densities with respect to some underlying measure µ, then

D(Q‖P) =

∫

X
q(x) log

q(x)

p(x)
µ(dx). (3.2)

In particular, when x is a discrete space and P and Q are discrete probability distributions, we have

D(Q‖P) =
∑

x∈X
q(x) log

q(x)

p(x)
. (3.3)

Note thatD(Q‖P) is not a metric (D(Q‖P) 6= D(P‖Q) in general, give an example!). However,
we do have the following lemma.

Lemma 3.7 D(Q‖P) ≥ 0 and the equality holds if and only if P = Q (almost everywhere).

Proof: Use the definition in (3.1) and Jensen’s inequality (noting that log x is strictly convex).

Example 3.8 Let P = N (µ1, σ
2) and Q = N (µ2, σ

2). Then

D(Q‖P) = EX∼Q
[−(X − µ2)2

2σ2
+
−(X − µ1)2

2σ2

]

= Ex∼Q
[
µ21 − µ22 − 2(µ1 − µ2)x

2σ2

]

=
µ21 − µ22 − 2(µ1 − µ2)µ2

2σ2

=
(µ1 − µ2)2

2σ2
.

Exercise 3.9 Compute the KL divergence between two multivariate Gaussian distributions N (µ1,Σ1)
and N (µ2,Σ2).

The following lemmas establishes a connection between moment generating function and the
KL divergence, showing the duality property between them.

1We will always assume Q � P without specifying this next.
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Lemma 3.10 (Duality between KL and MGF) We have

logEP

[
ef(X)

]
= sup

Q�P
{EQ [f(X)]−D(Q‖P)} .

Proof: Let Z = f(X) − logEP
[
ef(X)

]
. Since EP

[
eZ
]

= 1, by the variational form of entropy in
Lecture 2, we have

D(Q‖P) = EntP

[
dQ
dP

]
≥ EP

[
dQ
dP

Z

]
= EQ [Z] = EQ [f(X)]− logEP

[
ef(X)

]
,

or equivalently that

logEP

[
ef(X)

]
≥ EQ [f(X)]−D(Q‖P).

Since this holds for any Q� P, it follows that logEP
[
ef(X)

]
≥ supQ�P {EQ [f(X)]−D(Q‖P)} .

In addition, if we define Q by

dQ =
ef(X)

EP
[
ef(X)

]dP,

a direct calculation can show that logEP
[
ef(X)

]
= EQ [f(X)] − D(Q‖P) (check this!). This

completes the proof.

Lemma 3.11 (Chain rule of KL) Let P and Q be two probability measures that define the joint
distribution of random variables (X1, X2). Then,

D(Q‖P) = D(Q1‖P1) + EQ1 [D (Q2(·|X1)‖P2(·|X1))] ,

where P1 and Q2 are marginal distributions of X1 under the joint distribution P and Q respec-
tively, and P2(·|X1) and Q2(·|X1) are the conditional distribution of X2 given X1 under the joint
distribution P and Q respectively.

Proof: It follows from the Bayes formula that

dP = dP1 · dP2(·|X1) and dQ = dQ1 · dQ2(·|X1).

Consequently,

D(Q‖P) = EQ

[
log

dQ
dP

]
= EQ

[
log

dQ1

dP1

]
+ EQ

[
log

dQ2(·|X1)

dP2(·|X1)

]

= EQ1

[
log

dQ1

dP1

]
+ EQ1

[
EQ2(·|X1)

[
log

dQ2(·|X1)

dP2(·|X1)

]]

= D(Q1‖P1) + EQ1 [D (Q2(·|X1)‖P2(·|X1))]

as claimed.
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Remark 3.12 To have a better understanding of the above lemma, let us particularly consider the
case when (X1, X2) are real-valued and P and Q have continuous densities p(x1, x2) and q(x1, x2)
with respect to the Lebesgue measure, respectively. Let p1(x1) and q1(x1) be the marginal distribution
of X1 and X2 under P and Q respectively. Let p2(x2|x1) and q2(x2|x1) be the conditional probability
densities of X2 given X1 under P and Q respectively. Then

p2(x2|x1) =
p(x1, x2)∫

R p(x1, x2)dx2
and q2(x2|x1) =

q(x1, x2)∫
R q(x1, x2)dx2

.

It follows that

D(Q‖P) =

∫

R×R
q(x1, x2) log

q(x1, x2)

p(x1, x2)
dx1dx2

=

∫

R×R
q(x1, x2) log

q2(x2|x1)
(∫

R q(x1, x2)dx2
)

p2(x2|x1)
(∫

R p(x1, x2)dx2
)dx1dx2

=

∫

R×R
q(x1, x2) log

(∫
R q(x1, x2)dx2

)
(∫

R p(x1, x2)dx2
)dx1dx2 +

∫

R×R
q(x1, x2) log

q2(x2|x1)
p2(x2|x1)

dx1dx2

=

∫

R×R
q(x1, x2) log

q1(x1)

p1(x1)
dx1dx2 +

∫

R×R
q1(x1)q2(x2|x1) log

q2(x2|x1)
p2(x2|x1)

dx1dx2

=

∫

R
q1(x1) log

q1(x1)

p1(x1)
dx1 +

∫

R
q1(x1)

(∫

R
q2(x2|x1) log

q2(x2|x1)
p2(x2|x1)

dx2

)
dx1

= D(Q1‖P1) + EQ1 [D (Q2(·|X1)‖P2(·|X1))] .

Exercise 3.13 Let P = P1×P2 and Q = Q1×Q2 two product probability measures that define the
joint distribution of random variables (X1, X2). Show that

D(Q‖P) = D(Q1‖P1) +D(Q2‖P2).

Exercise 3.14 Generalize the result in Lemma 3.11 and Exercise 3.13 to the case of joint distri-
butions of n random variables.

3.1.2 Wasserstein Distance

Wasserstein distance is a distance defined over probability measures within the framework of optimal
transport. Roughly speaking, it is the least cost of transporting/redistributing a source probability
measure to a target probability measure. Optimal transport was first introduced in the Monge
formulation. Then Kantorovich relaxed it by allowing the mass splitting in the source based on the
notation of coupling.

Definition 3.15 (Coupling) Let P and Q be two given probability measures on X . We say a
probability measures π on X ×X is a coupling of P and Q if the marginal distributions of π in the
first and second coordinate coincides with P and Q, respectively. In addition, we denote by C(P,Q)
the set of all the couplings of P and Q.

Exercise 3.16 Does the coupling always exist? Are there always more than two couplings for a
fixed pair of probability measures?
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Definition 3.17 (Wasserstein Distance) Let (X , d) be a metric space. Given two probability
measures P and Q on X , their Wasserstein distance is defined as

W1(P,Q) = inf
π∈C(P,Q)

∫

X×X
d(x, y)dπ(x, y) = inf

π∈C(P,Q)
Eπ [d(X,Y )] (3.4)

If we view the joint distribution π as a transport plan, meaning a scheme for reshuffling the
probability mass P to another probability mass Q, and view d(·, ·) as the unit transport cost, then
Eπ [d(X,Y )] can be interpreted as the transport cost of associated with the plan π. Seeking the
the transportation plan that minimizes the transport cost is the optimal transport problem. The
solution to the optimal transport problem measures how far we have to move the mass of P and
turn it into Q and thus is a natural way to define the distance between two probability measures.

Remark 3.18

1. If d is a distance on X , W1(P,Q) is indeed a distance. Namely, it satisfies the three conditions
required for a distance, especially the triangular inequality. A proof of this can be found in
[4] and references therein.

2. It is evident that we can express the Wasserstein distance as

W1(P,Q) = inf
(X,Y )

{E [d(X,Y )] , X ∼ P, Y ∼ Q}.

3. What we have in (3.4) is actually the 1-Wasserstein distance, hence there is subscript 1 in
the notation. In general, we may also define p-Wasserstein distance as follows:

Wp = inf
π∈C(P,Q)

(Eπ [[d(X,Y )]p])1/p . (3.5)

4. Computing the Wasserstein distance is generally difficult and relies on some numerical solvers.
A detailed discussion of the computations is beyond the scope of this lecture.

If viewing (3.4) as an optimization problem (equality constrained) on the infinity dimensional
probability measure space, we can compute its dual problem. In addition, since every probability
measure corresponds a linear functional over the function space on X , we can also define the
distance between probability measures based on the perspective of linear functional (similar to
operator norm). This provides another duality for Wasserstein distance which plays an important
role in this lecture.

Theorem 3.19 (Duality) Under mild conditions, we have

W1(P,Q) , inf
π∈C(P,Q)

Eπ [d(X,Y )] = sup
f∈Lip(X ,d)

|EP [f(X)]− EQ [f(Y )]| . (3.6)

The proof of this theorem can be found in [4], and we only consider a simple example here.
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Figure 3.1: Problem setup of Example 3.20.

Example 3.20 (Discrete example) Here we consider P and Q defined on a discrete space X =
{x1, x2, x3, x4}, see Figure 3.1 for the problem setup. In order for π to be a coupling of P and Q
we must have

a+ c = 1/4, b+ d = 3/4, a+ b = 1/2, c+ d = 1/2, a, b, c, d ≥ 0.

For example, if we take π = P⊗Q, then

a = 1/8, b = 3/8, c = 1/8, d = 3/8,

with the total transport cost

c1 = Eπ [d(X,Y )] = 1/8 + 3/8 + 1/8 + 6/8 = 11/8.

There are also exists other coupling of P and Q (or transport plan) in addition to π2 = P⊗Q. For
example, we may let

a = 0, b = 1/2, c = 1/4, d = 1/4,

with the total transport cost

c2 = Eπ [d(X,Y )] = 0 + 1/2 + 1/4 + 1/2 = 5/4 < c1.

In fact, this is the minimum total transport cost we can achieve over all the possible couplings of P
and Q (why?), i.e.,

inf
π∈C(P,Q)

Eπ [d(X,Y )] = 5/4.

Moreover, let f = (f1, f2, f3, f3) be a function defined on X . Then f is 1-Lipschitz under d(·, ·)
if and only if

|f1 − f3| ≤ d(x1, x3) = 1, |f2 − f3| ≤ d(x2, x3) = 1, |f1 − f4| ≤ d(x1, x4) = 1, |f2 − f4| ≤ d(x2, x4) = 2.
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Given a 1-Lipschitz f , letting π (with (a, b, c, d)) be any coupling of P and Q, we have

|EP [f ]− EQ [f ]| =
∣∣∣∣
1

4
f1 +

3

4
f2 −

1

2
f3 −

1

2
f4

∣∣∣∣
= |(a+ c)f1 + (b+ d)f2 − (a+ b)f3 − (c+ d)f4|
= |a(f1 − f3) + b(f2 − f3) + c(f1 − f4) + d(f2 − f4)|
≤ Eπ [d(X,Y )] .

It follows that,

sup
f∈Lip(X ,d)

|EP [f ]− EQ [f ]| ≤ inf
π∈C(P,Q)

Eπ [d(X,Y )].

The equality can be achieved for example by taking f = (f1, f2, f3, f4) = (0, 1, 0,−1). Thus, we have
verified the duality theorem using this example.

Next we study a special case of the Wasserstein distance with the trivial metric d(x, y) = 1{x 6=y}.
In this case it can be shown that the Wasserstein distance is none other than the total variation
distance which itself is interesting in many applications.

Definition 3.21 (Total variation distance) The total variation distance between two probabil-
ity measures P and Q is defined as

‖P−Q‖TV = sup
A⊂X

|P(A)−Q(A)|.

Example 3.22 (Wasserstein distance for d(x, y) = 1{x 6=y}) In this case it is not hard to see
that f is 1-Lipschitz if and only if

|f(x)− f(y)| ≤ 1.

Since the Wasserstein distance is invariant to constant offsets of the function, we have

W1(P,Q) = sup
0≤f≤1

|EP [f(X)]− EQ [f(Y )]| .

Let dP(x) = p(x)µ(dx) and dQ(x) = q(x)µ(dx) for some underlying measure µ. Then we can
rewrite the Wasserstein distance as

W1(P,Q) = sup
0≤f≤1

∣∣∣∣
∫

X
f(x)(p(x)− q(x))µ(dx)

∣∣∣∣

=

∫

X
[p(x)− q(x)]+ µ(dx). (3.7)

On the other hand, since

|P(A)−Q(A)| =
∣∣∣∣
∫

A
(p(x)− q(x))µ(dx)

∣∣∣∣ ,
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it is not hard to see that the supremum is attained at A1 = {x : p(x) ≥ q(x)} or A2 = {x : q(x) ≥
p(x)} (show that |P(A)−Q(A)| have the same value on these two sets!). It follows that

‖P−Q‖TV =

∫

X
[p(x)− q(x)]+ µ(dx).

Therefore we have

W1(P,Q) = inf
π∈C(P,Q)

Eπ [X 6= Y ] = ‖P−Q‖TV. (3.8)

In this case we can also construct the optimal coupling/transport plan explicitly. We refer interested
readers to Chapter 4.2 of [2] for details.

3.2 Transportation Lemma and Tensorization

3.2.1 Transportation Lemma

There is a necessary and sufficient condition in terms of the two probability divergence measures
to characterize the sub-Gaussian property of Lipschitz functions. We begin with a sub-Gaussian
characterization in terms of the KL divergence.

Lemma 3.23 (Sub-Gaussian in terms of KL) Letting X ∼ P, then f(X) is ν2-sub-Gaussian
if and only if

|EQ [f(Y )]− EP [f(X)]| ≤
√

2ν2D(Q‖P) for all Q� P.

Proof: By the definition f(X) is sub-Gaussian if and only if

logEP

[
eλ(f(X)−EP[f(X))]

]
≤ λ2ν2

2
for all λ ∈ R.

Then, by the duality between DL divergence and MGF, this is equivalent to

λ (EQ [f(Y )− EP [f(X)]])−D(Q‖P)− λ2ν2

2
≤ 0 for all λ ∈ R and Q� P.

Taking the supremum of the left hand side yields the claim.

Lemma 3.24 (Transportation lemma) Let P be a probability measure defined on a metric space
(X , d). Then the following are equivalent:

1. Letting X ∼ P, f(X) is ν2-sub-Gaussian for every f ∈ Lip (X , d).

2. W1(Q,P) ≤
√

2ν2D(Q‖P) for all probability measures Q� P.

Proof: By the last lemma we can see that that the property 1 can be stated as

|EQ [f(Y )]− EP [f(X)] | ≤
√

2ν2D(Q‖P) for all Q� P. for all f ∈ Lip (X , d) and Q� P.

Taking the supremum of the left hand side with respect to f ∈ Lip (X , d) yields that the above
expression is equivalent to

W1(Q,P) ≤
√

2ν2D(Q‖P) for all Q� P,

which concludes the proof.
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Exercise 3.25 Lemma 3.24 works for f being 1-Lipschitz functions. What about general L-
Lipschitz functions?

Our first consequence of Lemma 3.24 is a useful inequality known as Pinsker inequality

Proposition 3.26 (Pinsker inequality) Let P and Q are probability measures satisfying Q� P.
Then

‖P−Q‖TV ≤
√

1

2
D(Q‖P). (3.9)

Proof: First we have shown that f is 1-Lipschitz with respect to d(x, y) = 1{x 6=y} if and only if
|f(x)−f(y)| ≤ 1. Thus, for any X ∼ P, we known that f(X) is in an interval of length bounded by
1. Consequently, f(X) is 1

4 -sub-Gaussian. Therefore, applying Lemma 3.24 yields the result since
we have already shown that W1(P,Q) = ‖P−Q‖TV for the trivial metric.

Of course, if we could give an independent proof of Pinsker inequality (there are indeed direct
proofs), we can use Lemma 3.24 to provide an alternative proof of the sub-Gaussian property of
bounded variables (by taking f = 1[a,b](x)).

Exercise 3.27 Let X ∼ P be ν2-sub-Gaussian. Show that W1(Q,P) .
√
ν2D(Q‖P).

Due to Theorem 3.19, in order to show f(X) is sub-Gaussian for f ∈ Lip (X , d), it suffices to
show that

inf
π∈C(P,Q)

Eπ [d(X,Y )] ≤
√

2ν2D(Q‖P). (3.10)

Inequalities of this type are usually called transportation (cost) inequalities which play an key role
in establishing some useful concentration inequalities that cannot be established by the previous
methods.

3.2.2 Tensorization and Bounded Difference Inequality Revisited

Given metric spaces (Xk, dk), k = 1, · · · , n, there are different ways to define a metric on
⊗n

k=1Xk,
for example,

dL(x, y) =
n∑

k=1

Lkdk(xk, yk), Lk > 0 (3.11)

or

d2(x, y) =

√√√√
n∑

k=1

dk(xk, yk)2. (3.12)

Rather that considering the tensorizaton in a specific setting, the following theorem provides a
general tensorization principle. The proof of the theorem is by induction and is omitted. Details
of the proof can be found in [2] and [3].
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Theorem 3.28 (Marton) Let
⊗n

k=1 Pk be a product measure on a product measure space
⊗n

k=1Xk.
Let φ : R+ → R+ be a convex function, and let ck : Xk × Xk → R+ be positive weight function.
Suppose that for k = 1, · · · , n and for every probability measure Qk which is absolutely continuous
with respect to Pk,

inf
π∈C(Pk,Qk)

φ (Eπ [ck(Xk, Yk)]) ≤ 2ν2D(Qk‖Pk).

Then for any probability measure Q that is absolutely continuous with respect to
⊗n

k=1 Pk, we have

inf
π∈C(

⊗n
k=1 Pk,Q)

n∑

k=1

φ(Eπ [ck(Xk, Yk)]) ≤ 2ν2D

(
Q‖

n⊗

k=1

Pk

)
. (3.13)

Note that the left hand of (3.13) is not necessarily a W1 distance. Thus, for different metric,
we need to choose suitable φ and ck in order to obtain a result associated with W1 distance. The
following proposition considers the dL(·, ·) metric in (3.11).

Proposition 3.29 Let
⊗n

k=1 Pk be a product measure on a product measure space
⊗n

k=1(Xk, dk).
If for each univariate probability measure,

W1(Qk,Pk) ≤
√

2ν2D(Qk‖Pk) for all Qk � Pk. (3.14)

Then

W1

(
Q,

n⊗

k=1

Pk

)
≤

√√√√2ν2

(
n∑

k=1

L2
k

)
D

(
Q‖

n⊗

k=1

Pk

)
for all Q�

n⊗

k=1

Pk,

where the W1 is defined using the distance dL(x, y) =
∑n

k=1 Lkdk(xk, yk). Hence, for any 1-Lipschitz
function f :

⊗n
k=1Xk → R under this metric, f(X) is sub-Gaussian if X ∼⊗n

k=1 Pk.

Proof: First we have

W1

(
Q,

n⊗

k=1

Pk

)
= inf

π∈C(
⊗n

k=1 Pk,Q)
Eπ

[
n∑

k=1

Lkdk(Xk, Yk)

]

= inf
π∈C(

⊗n
k=1 Pk,Q)

n∑

k=1

LkEπ [dk(Xk, Yk)]

≤

√√√√
n∑

k=1

L2
k

√√√√ inf
π∈C(

⊗n
k=1 Pk,Q)

n∑

k=1

(Eπ [dk(Xk, Yk)])
2.

Noting that the assumption implies

W1(Qk,Pk)2 = inf
π∈C(Pk,Qk)

(Eπ [dk(Xk, Yk)])
2 ≤ 2ν2D(Qk‖Pk),

the claim follows immediately from Theorem 3.28 by taking φ(x) = x2 and ck(·, ·) = dk(·, ·).
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Example 3.30 (Bounded difference inequality revisited) For any Xk ∼ Pk, under the met-
ric dk(xk, yk) = 1{xk 6=yk}, the Pinsker inequality implies that

W1(Qk,Pk) ≤
√

1

2
D(Qk‖Pk).

Thus, for f being 1-Lipschitz under the metric dL(x, y) =
∑n

k=1 Lk1{xk 6=yk} (equivalent to the
bounded difference property as mentioned at the beginning of this lecture), the application of Propo-
sition 3.29 yields that

f(X1, · · · , Xk) is
∑n

k=1 L
2
k

4 -sub-Gaussian,

which recovers the bounded difference inequality. More precisely, we have

inf
π∈C(

⊗n
k=1 Pk,Q)

n∑

k=1

(Eπ [dk(Xk, Yk)])
2 = inf

π∈C(
⊗n

k=1 Pk,Q)

n∑

k=1

(π [Xk 6= Yk])
2 ≤ 1

2
D

(
Q‖

n⊗

k=1

Pk

)
.

(3.15)

3.3 Talagrand Concentration Inequality

Up to this point, the transportation method did not yield any new results yet. In this section we
will use a type of asymmetric transportation cost inequalities based on a one-sided variant of the
trivial metric to establish the following remarkable Talagrand concentration inequality.

Theorem 3.31 (Talagrand) Let f :
⊗n

k=1Xk → R be a function satisfying

f(y)− f(x) ≤
n∑

k=1

ak(y)1{xk 6=yk} for all x, y.

Assume supy
(∑n

k=1 a
2
k(y)

)
≤ ν2. Then, for any independent random variables X = (X1, · · · , Xn)

taking values in
⊗n

k=1Xk, f(X) is ν2-sub-Gaussian.

Proof: Assume X ∼⊗n
k=1 Pk. By Lemma 3.23, we need to show that

∣∣∣EQ [f(Y )]− E⊗n
k=1 Pk

[f(X)]
∣∣∣ ≤

√√√√2ν2D

(
Q‖

n⊗

k=1

Pk

)
. (3.16)

Letting π ∈ C (Q,P), a simple calculation yields that (again the goal is to reduce the problem about
the concentration of f to the problem of comparing the divergences of two probability measures)

EQ [f(Y )]− E⊗n
k=1 Pk

[f(X)] = Eπ [f(Y )− f(X)]

≤ Eπ

[
n∑

k=1

ck(Y )1{Xk 6=Yk}

]

=

n∑

k=1

Eπ
[
ck(Y )1{Xk 6=Yk}

]
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=

n∑

k=1

Eπ [ck(Y )π [Xk 6= Yk|Y ]]

≤
n∑

k=1

(
Eπ
[
(ck(Y ))2

])1/2 (Eπ
[
(π [Xk 6= Yk|Y ])2

])1/2

≤
(
Eπ

[
n∑

k=1

(ck(Y ))2

])1/2( n∑

k=1

Eπ
[
(π [Xk 6= Yk|Y ])2

])1/2

≤ ν
(

n∑

k=1

Eπ
[
(π [Xk 6= Yk|Y ])2

])1/2

.

Similarly, we have (check this!)

E⊗n
k=1 Pk

[f(X)]− EQ [f(Y )] ≤ ν
(

n∑

k=1

Eπ
[
(π [Xk 6= Yk|X])2

])1/2

.

Therefore, in order to show (3.16), it suffices to show (since π is arbitrary above)

max

{
inf

π∈C(Q,P)

n∑

k=1

Eπ
[
(π [Xk 6= Yk|Y ])2

]
, inf
π∈C(Q,P)

n∑

k=1

Eπ
[
(π [Xk 6= Yk|X])2

]}
≤ 2D

(
Q‖

n⊗

k=1

Pk

)
,

(3.17)

which actually holds. Thus the proof is complete.

Remark 3.32 Here we have used (3.17) without proof. Note that (3.17) can be viewed as an
asymmetric version of (3.15). The details of proof can be found in [2] and [3], which uses a
conditional version of Theorem 3.28 for tensorization.

Corollary 3.33 (Talagrand) Let X = (X1, · · · , Xn) be a vector of independent random variables
taking values in [a, b]. Let f : Rn → R be convex and L-Lipschitz with respect to the Euclidean
norm. Then, f(X) is L2(b− a)2-sub-Gaussian.

Proof: The first order condition for convexity implies

f(y)− f(x) ≤ ∇f(y)>(y − x) for all x, y.

Since |xk − yk| ≤ (b− a), we have

f(y)− f(x) ≤
n∑

k=1

∂kf(y)(yk − xk)

≤
n∑

k=1

(b− a) |∂kf(y)| 1{xk 6=yk}.

The result follows immediately from Theorem 3.31 by further noting that ‖∇f(y)‖2 ≤ L.
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Remark 3.34 a) Only upper tail can be established in this scenario based on the entropy method in
Lecture 2. b) The convexity property of f is indispensable to establish the sub-Gaussian property.
There exists nonconvex 1-Lipschitz functions Corollary 3.33 even fails for symmetric Bernoulli
variables, see for example Problem 4.9 of [2].

Example 3.35 (Rademacher complexity revisited) In Example 2.22 of Lecture 2, we have
established upper tail bound of the Rademacher complexity of a set A in terms of the width of the set
supa∈A ‖a‖2. In the example we actually show that the function f(x1, · · · , xn) = supa∈A [

∑n
k=1 akxk]

is convex and supa∈A ‖a‖2-Lipschitz continuous. Thus, it follows from Corollary 3.33 that the
Rademacher complexity supa∈A [

∑n
k=1 akεk] is 4 supa∈A ‖a‖22 and hence

P

[∣∣∣∣∣sup
a∈A

[
n∑

k=1

akεk

]
− E

[
sup
a∈A

∣∣∣∣∣
n∑

k=1

akεk

]]∣∣∣∣∣ ≥ t
]
≤ 2exp

(
− t2

8 supa∈A ‖a‖22

)
.

3.4 Gaussian Concentration Revisited

So far, we have established certain concentration inequalities (i.e., sub-Gaussian properties) for
Lipschitz functions under the `1-type metric,

f(y)− f(x) ≤ L
n∑

k=1

dk(xk, yk) or f(y)− f(x) ≤
n∑

k=1

c(y)dk(xk, yk). (3.18)

However, we have already seen that independent Gaussian random variables exhibits dimension
free concentration for Lipschitz functions under the `2 metric,

f(y)− f(x) ≤ L

√√√√
n∑

k=1

[dk(xk, yk)]
2. (3.19)

That is if f satisfies (3.19) and X is a vector of i.i.d standard Gaussian random variables, then
f(X) is L2-sub-Gaussian.

Since `2-metric is less than the `1-metric, if f satisfies (3.19), it naturally satisfies the first in-
equality in (3.18). Lets first attempt to use Proposition 3.29 to establish the Gaussian concentration.
Since for each univariate standard Gaussian random variables, we have W1(Qk,Pk) .

√
D(Qk‖Pk)

(see Exercise 3.27), by Proposition 3.29 we can conclude that for any Lipschitz functions satisfying
(3.19), f(X) is nL2-sub-Gaussian. However, it is much weaker than the Gaussian concentration we
have previously seen which does have the multiple factor n. Thus, we need a direct route for the
concentration of `2-Lipschitz functions.

Let X ∼ ⊗n
k=1 Pk and assume f is 1-Lipschitz under the `2-metric. Then, in order to estab-

lish the sub-Gaussian property of f(X), by the concentration lemma and the Monge-Kantorovich
duality, we need to show that for any Q�⊗n

k=1 Pk,

W1

(
Q,

n⊗

k=1

Pk

)
= inf

π∈C(Q,
⊗n

k=1 Pk)
Eπ



√√√√

n∑

k=1

[dk(Xk, Yk)]
2




≤

√√√√2ν2D

(
Q‖

n⊗

k=1

Pk

)
. (3.20)
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Since by Jensen’s inequality (
√
z is concave) we evidently have

inf
π∈C(Q,

⊗n
k=1)

Eπ



√√√√

n∑

k=1

[dk(Xk, Yk)]
2


 ≤ inf

π∈C(Q,
⊗n

k=1 Pk)

√√√√Eπ

[
n∑

k=1

[dk(Xk, Yk)]
2

]
.

Thus it suffices to show

inf
π∈C(Q,

⊗n
k=1 Pk)

√√√√Eπ

[
n∑

k=1

[dk(Xk, Yk)]
2

]
≤

√√√√2ν2D

(
Q‖

n⊗

k=1

Pk

)
,

or equivalently

inf
π∈C(Q,

⊗n
k=1 Pk)

Eπ

[
n∑

k=1

[dk(Xk, Yk)]
2

]
≤ 2ν2D

(
Q‖

n⊗

k=1

Pk

)
. (3.21)

That is, what we need is a characterization based on W2 distance instead of W1 distance. It turns
out that if (3.21) is satisfied each univariate Pk, then it is also satisfied for the product measure⊗n

k=1 Pk.

Theorem 3.36 Let
⊗n

k=1 Pk be a product probability measure on
⊗n

k=1(Xk, dk). Assume

inf
π∈C(Qk,Pk)

Eπ
[
[dk(Xk, Yk)]

2
]
≤ 2ν2D (Qk‖Pk) for all Qk � Pk. (3.22)

holds for each k. Then we have

inf
π∈C(Q,

⊗n
k=1 Pk)

Eπ

[
n∑

k=1

[dk(Xk, Yk)]
2

]
≤ 2ν2D

(
Q‖

n⊗

k=1

Pk

)
for all Q�

n⊗

k=1

Pk.

Proof: Apply Theorem 3.28 with φ(x) = x and ck(xk, yk) = [dk(xk, yk)]
2.

Remark 3.37 a) It can be shown that the standard Gaussian distribution satisfies (3.22) (see
for example [3]). Thus, we can establish the dimension free Gaussian concentration based on the
transportation method from the above analysis, which has been established by the Herbst argument
and Gaussian log-Sobolev inequality in Lecture 2. b) (3.22) cannot be established for arbitrary
sub-Gaussian random variables (otherwise it will contradicts with the counter example for Corol-
lary 3.33). c) In fact it turns out (3.22) is not only sufficient, but also necessary for establishing
(3.20), i.e., for establishing the dimension-free concentration result, see for example [2].

3.5 Short Summary

We have discussed three methods for establishing concentration inequalities of functions of inde-
pendent random variables:

• Chernoff method (Lecture 1)

• Entropy method (Lecture 2)
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• Transportation method (Lecture 3).

In both the entropy method and the transportation method, the variational formulations (duality
in the transportation method) play an important role in showing the tensorization property. Here
are a list of concentration inequalities we have presented:

• Hoeffding inequality (Lecture 1, for sum of independent sub-Gaussian random variables)

• Bernstein equality (Lecture 1, for sum of independent sub-exponential random variables )

• Bounded difference inequality (Lecture 1, for function obeying bounded difference property)

• General bounded difference inequality (Lecture 2, for function obeying asymmetric bounded
difference property)

• Gaussian concentration inequality (Lecture 2 and 3, Lipschitz function concentration of Gaus-
sian random variables)

• Talagrand inequality (Lecture 3, Lipschitz and convex function concentration of bounded
random variables)

In addition, there is another method – geometric method based on isoperimetric inequalities
we did not cover. This method works for certain types of probability measures such as Gaussian
measure and uniform measure on the sphere.

Reading Materials

[1] Martin Wainwright, High-dimensional statistics – A non-asymptotic viewpoint, Chapter 3.3.

[2] Ramon van Handel, Probability in High Dimension, Chapters 4.

[3] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration inequalities: A nonasymp-
totic theory of independence, Chapters 8.

[4] Gabriel Peyré and Marco Cuturi, Computational optimal transport, Chapter 2, 8.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 4: Expectation of Suprema: Finite Approximation

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/03/31)

Recap and Motivation: As already mentioned previously, estimating the suprema of the form

sup
t∈T

Xt (4.1)

arises in a wide range of contexts. Two representative examples are:

• The spectral norm of a random matrix W ∈ Rm×n can be expressed as

‖W‖2 = sup
‖u‖2=1,‖v‖2=1

u>Wv.

• The generalization error analysis in empirical risk minimization finally reduces to

sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ ,

where F is a set of functions. This is typically referred to as Uniform Law of Large Numbers.

While the concentration of (4.1) around its mean for typical applications can be established by the
concentration inequalities discussed in the last three lectures, computing the expectation

E
[
sup
t∈T

Xt

]
(4.2)

is by no means easy. This will be the focus in the next few lectures. We will first study the general
form (4.2), and then give a particular treatment of this problem later for uniform law of large
numbers. Unless otherwise stated, it is always assumed that E [Xt] = 0.

Agenda:

• Finite maxima

• Gaussian complexity and Rademacher complexity

• Covering and packing

• Finite approximation bound
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4.1 Finite Maxima

The problem here is to bound

E
[

max
k=1,··· ,n

Xk

]
,

where Xk is σ2-sub-Gaussian. Maybe the most naive approach is to bound the supremum by a
sum,

E
[

max
k=1,··· ,n

Xk

]
≤ E

[
n∑

k=1

|Xk|
]
≤ n max

k=1,··· ,n
E [|Xk|] . nσ,

where the last inequality follows from the σ2-sub-Gaussian property of each Xk. Of course,
bounding a maximum by a sum is an exceedingly crude idea. We may consider a transform of
maxk=1,··· ,nXk such that the gap between supreme and sum is seemingly not so large after the
transform. Next we attempt to provide a bound based on the higher order moments,

E
[

max
k=1,··· ,n

Xk

]
≤
((

E
[

max
k=1,··· ,n

|Xk|
])p)1/p

≤
(
E
[

max
k=1,··· ,n

|Xk|p
])1/p

≤
(
n max
k=1,··· ,n

E [|Xk|p]
)1/p

. n1/pσ
√
p.

Minimizing the righthand side with respect to p yields that

E
[

max
k=1,··· ,n

Xk

]
. σ

√
log n.

Of course we can apply the moment generating function to estimate the maximum as in the devel-
opment of the tail bound by the Chernoff method. More precisely, we have the following lemma.

Lemma 4.1 Let {Xk}nk=1 be σ2-sub-Gaussian random variables. Then

E
[

max
k=1,··· ,n

Xk

]
≤ σ

√
2 log n.

Proof: We have

E
[
exp

(
λmax

k
Xk

)]
= E

[
max
k

exp (λXk)

]
≤
∑

k

E [exp (λXk)]

≤ n exp(σ2λ2/2) = exp(log(n) + σ2λ2/2).

Thus, the application of Jensen’s inequality yields that

exp

(
E
[
λmax

k
Xk

])
≤ E

[
exp

(
λmax

k
Xk

)]
≤ exp(log(n) + σ2λ2/2),
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which leads to

E
[
max
k

Xk

]
≤ log(n)

λ
+
σ2λ

2
.

Taking λ =
√

2 log(n)/σ concludes the proof.
Note that the above result does not require that Xk, k = 1, · · · , n are independent to each other.

It is evident that we cannot obtain a general lower bound, for example, letting X1 = · · · = Xn.
Nevertheless, the upper bound in the last lemma is indeed tight for independent Gaussian random
variables. More details on lower bound will be provided in the sequel for suprema of random
Gaussian processes.

Lemma 4.2 Let {Xk}nk=1 be i.i.d N (0, σ2) random variables. Then there exists a small absolute
constant c > 0 such that

E
[

max
k=1,··· ,n

Xk

]
≥ c · σ

√
log n.

Proof: First we have

E
[

max
k=1,··· ,n

Xk

]
= E

[
max

{
max

k=1,··· ,n
Xk, 0

}]
+ E

[
min

{
max

k=1,··· ,n
Xk, 0

}]

≥ E
[
max

{
max

k=1,··· ,n
Xk, 0

}]
+ E [min {X1, 0}]

=

∫ ∞

0
P
[

max
k=1,··· ,n

Xk > t

]
dt+ E [min {X1, 0}]

≥ δ · P
[

max
k=1,··· ,n

Xk > δ

]
− E [|X1|]

= δ (1− (P [X1 ≤ δ])n)− E [|X1|]
= δ (1− (1− P [X1 > δ])n)− E [|X1|] .

Note that

P [X1 > δ] =
1√
2πσ

∫ ∞

δ
e−

x2

2σ2 dx

=
1√
2πσ

∫ ∞

δ
e−

(y+δ)2

2σ2 dy

≥ e−δ
2/σ2

c1

for some numerical constant c1 > 0. Choosing δ = σ
√

log(n/c1) yields that P [X1 > δ] ≥ 1/n.
Consequently,

E
[

max
k=1,··· ,n

Xk

]
≥ σ

√
log(n/c1)(1− (1− 1/n)n)− σ

≥ (1− 1/e)
√

log(n/c1)σ − σ,

which concludes the proof for sufficiently large n.
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4.2 Rademacher Complexity and Gaussian Complexity

This section studies E [supt∈T Xt] associated with Rademacher complexity and Gaussian complexity.
Recall that give a set T ⊂ Rd, the Rademacher complexity is defined as

R(T ) = E
[
sup
t∈T
〈ε, t〉

]
, ε = (ε1, · · · , εd),

while the Gaussian complexity of T is defined as

G(T ) = E
[
sup
t∈T
〈g, t〉

]
, g ∼ N (0, Id),

Lemma 4.3 We have

R(T ) . G(T ) . R(T )
√

log d.

Proof: Lower bound. First we have

R(T ) = Eε

[
sup
t∈T

d∑

k=1

εktk

]
=

√
π

2
Eε

[
sup
t∈T

Eg

[
d∑

k=1

εk|gk|tk
]]

≤
√
π

2
Eε

[
Eg

[
sup
t∈T

d∑

k=1

εk|gk|tk
]]

=

√
π

2
E

[
sup
t∈T

n∑

k=1

gktk

]

=

√
π

2
G(T ),

where the third follows from the fact that εk|gk| has the same distribution with gk.
Upper bound. To prove the upper bound, first note that the function

f(a1, · · · , ad) := E

[
sup
t∈T

d∑

k=1

εktkak

]

is a convex function. Thus, the maximum of f over the region {(a1, · · · , ad) : |ak| ≤ 1, k = 1, · · · , d}
must be achieved at the boundary. Then it follows that

E

[
sup
t∈T

d∑

k=1

εktkak

]
≤ E

[
sup
t∈T

d∑

k=1

εktk

]
for all |ak| ≤ 1, k = 1, · · · , d.

Consequently,

G(T ) = Eg

[
Eε

[
sup
t∈T

d∑

k=1

εk|gk|tk
]]

= Eg

[
max
k
|gk| · Eε

[
sup
t∈T

d∑

k=1

εk
|gk|

maxk |gk|
tk

]]

4



≤ Eg
[
max
k
|gk| · R(T )

]

� R(T )
√

log d,

as claimed.

Example 4.4 (Unit 2-norm ball Bd2) Let Bd2 = {t ∈ Rd : ‖t‖2 ≤ 1}. Then,

R(T ) = E

[
sup
‖t‖2≤1

〈ε, t〉
]

= E [‖ε‖2] =
√
d.

The same argument shows that

G(T ) = E [‖g‖2] ≤
√

E
[
‖g‖22

]
=
√
d.

Together with Lemma 4.3, we can conclude that G(Bd2) �
√
d. Therefore, the Rademacher complexity

and the Gaussian complexity of Bd2 are essentially the same.

Example 4.5 (Unit 1-norm ball Bd1) Let Bd1 = {t ∈ Rd : ‖t‖1 ≤ 1}. Then,

R(T ) = E

[
sup
‖t‖1≤1

〈ε, t〉
]

= E [‖ε‖∞] = 1,

while

G(T ) = E

[
sup
‖t‖1≤1

〈g, t〉
]

= E [‖g‖∞] �
√

log d.

Therefore, in this case, the Rademacher complexity and Gaussian complexity differ by the order√
log d. By Lemma 4.3, this difference turns out to be the worst possible.

4.3 Covering and Packing

For general random variables Xt and infinite number of elements in T , the first step can be made
by approximating the supremum with a maximum of finite number of random variables. It should
be not surprising that overall the bound for (4.2) should rely on the complexity or richness of the
index set T . This section studies two closely related ways to measure the complexity of T , which
indeed shows how to approximate T with a set of finite number of elements to achieve certain
accuracy.

Definition 4.6 (ε-net and covering number) Let (T, d) be a metric space. A set N ⊂ T is
called an ε-net of (T, d) if for every t ∈ T , there exists a π(t) ∈ N such that d(t, π(t)) ≤ ε. The
covering number of (T, d), denoted N(T, d, ε), is the smallest possible cardinality of an ε-net of
(T, d). That is,

N(T, d, ε) = inf{|N | : N is a ε-net of (T, d)}.

5



Figure 4.1: Covering (right) and packing (left) [2].

Note that N is a ε-net of T if and only if (see right of Figure 4.1)

T ⊂
⋃

t∈N
B(t, ε), where B(t, ε) = {s ∈ T : d(t, s) ≤ ε}.

The covering number N(T, d, ε) can be viewed as a measure of the complexity of T at the scale
ε: The more complex T is, the more number of points we need to approximate it up to a certain
precision. In addition, the logarithm of the covering number logN(T, d, ε) is often called the metric
entropy of T as it is equivalent to the number of bits needed to encode every points of T up to a
prescribed precision ε.

Example 4.7 Consider the interval T = [−1, 1] with the metric d(t, t′) = |t− t′|. If we let

N = {tk = −1 + 2(k − 1)ε, k = 1, · · · , kmax}

for the kmax such that tkmax ≤ 1. it is not hard to see that N is an ε-net of T . Thus, we have

N(T, d, ε) ≤ 1

ε
+ 1.

Exercise 4.8 Generalize the above result to the d-dimensional cube T = [−1, 1]d with d(t, t′) =

‖t− t′‖∞ and show that N(T, d, ε) ≤
(
1
ε + 1

)d
.

Definition 4.9 (ε-packing and packing number) Let (T, d) be a metric space. A set P ⊂ T
is called an ε-packing of (T, d) if for every t, t′ ∈ P and t 6= t′, we have d(t, t′) > ε. The packing
number of (T, d), denoted P (T, d, ε), is the largest possible cardinality of an ε-packing of (T, d).
That is,

P (T, d, ε) = sup{|P | : P is a ε-packing of (T, d)}.
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The key idea, which was already hinted at above, is that the notion of packing is dual to the
notion of covering (i.e., the typical primal-dual relationship between inf and sup), as given in the
following lemma. This means that we can use covering and packing interchangeably. It is often the
case that estimating one of them is easier than estimating the other in the applications.

Lemma 4.10 (Dual or equivalence between covering and packing) For any ε > 0,

P (T, d, 2ε) ≤ N(T, d, ε) ≤ P (T, d, ε).

Proof: Upper bound. Let P be a maximal ε-packing of (T, d). Then it is not hard to see
that P is also a ε-net of (T, d); otherwise it will violates the maximality. The upper bound follows
immediately.

Lower bound. Let P = {xi} be an 2ε-packing of (T, d) and let N = {yj} be a ε-net of (T, d).
It can be argued that each closed B(yj , ε) ball can only contain one xi due to the 2ε-separability of
{xi}. Since each xi must be contained in one B(yj , ε), we must have |P | ≤ |N |. The lower bound
follows due to the arbitrary of P and N .

The following lemma studies the covering of unit-norm balls in Rd. The proof is based on a
clever technique known as a volume argument.

Lemma 4.11 Let ‖ · ‖ be a norm defined in Rd (e.g., 1-norm, 2-norm or infinity-norm). Let Bd
be a unit ‖ · ‖ ball, i.e., Bd = {t ∈ Rd : ‖t‖ ≤ 1}. Then

(
1

ε

)d
≤ N(Bd, ‖ · ‖, ε) ≤

(
1 +

2

ε

)d
.

Proof: Lower bound. Let N = N(Bd, ‖ · ‖, ε). We know that B can be covered with N balls of
radius ε (see right of Figure 4.1 for an illustration under the 2-norm). Thus,

vol(Bd) ≤ Nvol(εBd).

Noting that vol(εBd) = εdvol(Bd), the lower bound follows.
Upper bound. For the upper bound we consider P = P (Bd, ‖ · ‖, ε). Let {xi} ⊂ Bd be the

ε-packing of Bd. Construct P balls B(xi, ε/2). Then we have
⋃

xi

B(xi, ε/2) ⊂ Bd +
ε

2
Bd =

(
1 +

ε

2

)
Bd,

see the left of Figure 4.1. Thus, it follows that

P · vol
(ε

2
Bd
)
≤ vol

((
1 +

ε

2

)
Bd
)
.

It follows that P ≤
(
1 + 2

ε

)d
, and the upper bound follows by noting Lemma 4.10.

The result in Lemma 4.11 for the unit 2-norm ball Bd2 will be very useful for studying the
spectral norm of a random matrix. It follows that the metric entropy of Bd2 satisfies

logN(Bd2, ‖ · ‖2, ε) ∼ d log

(
1

ε

)
,

which scales linearly with respect to d. For some spaces (of functions), the metric entropy scales
exponentially with respect to d, hence suffering from the curse of dimensionality.

Remark 4.12 Result and argument in Lemma 4.11 can be generalized to any set T in Rd, see [3].
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4.4 Finite Approximation Bound

At last, we consider the general case E [supt∈T Xt] and present a simple bound via one step of finite
approximation. More precisely, the idea is approximating E [supt∈T Xt] by a finite maximum over
a ε-net of T , together with the approximation error.

Theorem 4.13 Assume Xt is σ2-sub-Gaussian for every t ∈ T . Then,

E
[
sup
t∈T

Xt

]
≤ inf

ε>0

{
E
[
sup
t∈T

(
Xt −Xπ(t)

)]
+
√

2σ2 logN(T, d, ε)

}
.

Proof: Let ε > 0 and N be a ε-net of (T, d). For any t, let π(t) be the point in N such that
d(t, π(t)) ≤ ε. Then,

sup
t∈T

Xt = sup
t∈T

(
Xt −Xπ(t) +Xπ(t)

)
≤ sup

t∈T

(
Xt −Xπ(t)

)
+ sup

t∈T
Xπ(t).

Taking the expectation on both sides and using the upper bound for the supremum of a finite
number of sub-Gaussian random variables yields

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

(
Xt −Xπ(t)

)]
+
√

2σ2 logN(T, d, ε).

Noting that the first term indeed relies on ε since d(t, π(t)) ≤ ε, taking the infimum over all ε > 0
concludes the proof.

There is a trade-off in the bound of Theorem 4.13. When ε decreases, the first term will
potentially become smaller since Xt becomes closer to Xπ(t), but the second term increases as the
covering number increases under a decreasing precision.

Example 4.14 (Maximum singular value of sub-Gaussian random matrix) Let W ∈ Rm×n
be a random matrix with i.i.d σ2-sub-Gaussian entries. We would like to estimate

E [‖W‖2] .

By the variational formula of the spectral norm,

‖W‖2 = sup
u∈Bm2 ,v∈Bn2

uTWv,

it is equivalent to bound E

[
sup

u∈Bm2 ,v∈Bn2
uTWv

]
. Firstly note that uTWv is σ2-sub-Gaussian for

every u ∈ Bm2 and v ∈ Bn2 (verify this!). Let M be an ε-net of Bm2 and N be an ε-net of Bn2 . By
Theorem 4.13, we have

E [‖W‖2] ≤ E

[
sup

u∈Bm2 ,v∈Bn2

(
uTWv − π(u)TWπ(v)

)
]

+
√

2σ2 log |M ||N |, ∀ε > 0.

• By Lemma 4.11, we can choose M ≤ (1 + 2/ε)m and N ≤ (1 + 2/ε)n.
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• Because for any u ∈ Bm2 , v ∈ Bn2 ,

|uTWv − π(u)TWπ(v)| ≤ |(u− π(u))TWv|+ |π(u)TW (v − π(v))|
≤ 2ε‖W‖2,

we have E
[
supu∈Bm2 ,v∈Bn2

(
uTWv − π(u)TWπ(v)

)]
≤ 2εE [‖W‖2].

Combining all them together yields

E [‖W‖2] ≤
1

1− 2ε

√
2σ2(m+ n) log(3/ε), ∀ε > 0.

Taking ε to be a small constant (e.g., ε = 1/4) yields that

E [‖W‖2] . σ(
√
m+

√
n).

As can be seen in the next lecture, this crude bound already captures the correct (tight) order of
magnitude of the matrix norm.

A careful reader may find out that what have used in the above analysis is essentially the result

‖W‖2 = sup
u∈Bm2 ,v∈Bn2

uTWv ≤ 1

1− 2ε
sup

u∈M,v∈N
uTWv.

Moreover, because the remaining term is of the same order with the target to bound but with a
smaller factor, i.e.,

E

[
sup

u∈Bm2 ,v∈Bn2

(
uTWv − π(u)TWπ(v)

)
]
≤ 2εE [‖W‖2] ,

optimal bound (in order) can be achieved for this case. But sometimes, the bound for the remaining
term obtained via invoking the Lipschitz property is inefficient, so the finite approximate scheme
only yields sub-optimal bound. An example will be presented when discussing uniform law of large
numbers.

Reading Materials

[1] Martin Wainwright, High Dimensional Statistics – A non-asymptotic viewpoint, Chapters 5.1,
5.2 and 5.3.

[2] Ramon van Handel, Probability in High Dimension, Chapter 5.1, 5.2.

[3] Roman Vershynin, High-Dimensional Probability: An introduction with applications in data
science, Chapter 4.2, 4.4.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 5: Expectation of Suprema: Chaining

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/04/15)

Recap and motivation: Recall from the last lecture that we have established the following bound
based on (one-step) finite approximation:

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

(
Xt −Xπ(t)

)]
+ E

[
sup
t∈T

Xπ(t)

]
, (5.1)

where π(t) is the projection of t onto a covering set of T , denoted N . Assume T has infinite number
of points. Then the first term on the right side of (5.1) still has infinite number of terms. Though
for some problems (i.e., computing the expectation of the spectral norm of a random matrix), it
can be shown that E

[
supt∈T

(
Xt −Xπ(t)

)]
is a small proportion of E [supt∈T Xt], in general it is

still not very convenient to process the first term. In order to mitigate this, we may continue to
approximate T by a finer covering set, denoted N ′, and obtain

E
[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

(
Xt −Xπ′(t)

)]
+ E

[
sup
t∈T

(
Xπ′(t) −Xπ(t)

)]
+ E

[
sup
t∈T

Xπ(t)

]
,

where π′(t) denotes the projection of t onto N ′. Of course, we can iterate this process and the term
with infinite number of points is expected to diminish to zero as the approximation becomes finer
and finer. The chaining argument applies this mechanism from the coarsest covering (with only
one point), which yields a more tractable bound for E [supt∈T Xt].

Agenda:

• The chaining method

• Examples

• Generic chaining

5.1 The Chaining Method

Definition 5.1 (Sub-Gaussian process) A random process {Xt}t∈T defined on a metric space
(T, d) is called sub-Gaussian if E [Xt] = 0 and Xt −Xs is d(t, s)2-sub-Gaussian for all t, s ∈ T .

Since the variations within the random process is determined by the metric space (T, d), it is
expected to exploit the structure of (T, d) to bound E [suptXt]. The chaining method will be our
focus of this lecture. It provides one way to exploit the structure of (T, d). (A more refined way
(see [2] for example, equivalent to generic chaining which is presented in the last section but not
required, may improve the chaining bound in some situations.)

Example 5.2 Consider Xt = 〈g, t〉, where g ∈ N (0, Id) and t ∈ T ⊂ Rd. Since Xt−Xs = 〈g, t− s〉
is a ‖t− s‖22-Gaussian, {Xt}t∈T is certainly a sub-Gaussian process.
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Theorem 5.3 (Discrete Dudley inequality) Let {Xt}t∈T be a separable sub-Gaussian process
on the metric space (T, d). Then1,

E
[
sup
t∈T

Xt

]
.
∑

k∈Z
2−k
√

logN(T, d, 2−k).

Figure 5.1: Illustration for chaining.

Proof: Without loss of generality we may assume |T | < ∞ since the separability of {Xt}t∈T
implies that E [supt∈T Xt] = lim

n→∞
E
[
supt∈Tn Xt

]
where Tn in an increasing finite subset of T .

Let k0 ∈ Z such that 2−k0 > diam(T ). Then any singleton T0 = {t0} is an 2−k0-net of T . For
k > k0, let Tk be the 2−k-net of T with covering number N(T, d, 2−k). Moreover, since |T | < ∞,
there exists a sufficiently large K such that TK = T , see Figure 5.1. Thus, we have

Xt = Xt0 +

K∑

k=k0+1

(
Xπk(t) −Xπk−1(t)

)
,

where πk(t) maps t to the nearest point in Tk. It follows that

E
[
sup
t∈T

Xt

]
≤

K∑

k=k0+1

E
[
sup
t∈T

(
Xπk(t) −Xπk−1(t)

)]
. (5.2)

First note that there are at most

|Tk||Tk−1| ≤ |Tk|2 = N(T, d, 2−k)2

terms in supt∈T
(
Xπk(t) −Xπk−1(t)

)
. Moreover, since

d(πk(t), πk−1(t)) ≤ d(πk(t), t) + d(t, πk−1(t)) ≤ 3× 2−k,

1The negative k in the sum denotes the approximation in the coarse (or large) scale with a small metric entropy. If
diam(T ) <∞, there exists a sufficiently small k0 such that for all k ≤ k0, N(T, d, 2k) = 1 and thus logN(T, d, 2k) = 0.
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and Xπk(t) −Xπk−1(t) is d(πk(t), πk−1(t))2-sub-Gaussian by the assumption, we have

E
[
sup
t∈T

(
Xπk(t) −Xπk−1(t)

)]
. 2−k

√
logN(T, d, 2−k).

Inserting this into (5.2) completes the proof.

Remark 5.4 A careful reader may find out that what we have actually established in Theorem 5.3
is that

E
[
sup
t∈T
|Xt −Xt0 |

]
.
∑

k∈Z
2−k
√

logN(T, d, 2−k).

This observation will be useful in one of the examples in the sequel.

Discrete Dudley inequality bounds E [supt∈T Xt] by a sum of (geometric structured) covering
scales times the corresponding square root of metric entropies. The result can be written in an
integral form since the sum can be viewed as a Riemann sum approximation to a certain integral.

Theorem 5.5 (Dudley integral) Let {Xt}t∈T be a separable sub-Gaussian process on the metric
space (T, d). Then

E
[
sup
t∈T

Xt

]
.
∫ ∞

0

√
logN(T, d, ε)dε.

Proof: The claim follows from

∑

k∈Z
2−k
√

logN(T, d, 2−k) = 2
∑

k∈Z

∫ 2−k

2−(k+1)

√
logN(T, d, 2−k)dε

≤ 2
∑

k∈Z

∫ 2−k

2−(k+1)

√
logN(T, d, ε)dε

= 2

∫ ∞

0

√
logN(T, d, ε)dε,

which completes the proof.

Remark 5.6 In the proof we have shown that

∑

k∈Z
2−k
√

logN(T, d, 2−k) ≤ 2

∫ ∞

0

√
logN(T, d, ε)dε.

Actually, we can also establish that

∑

k∈Z
2−k
√

logN(T, d, 2−k) =
∑

k∈Z

∫ 2−(k−1)

2−k

√
logN(T, d, 2−k)dε ≥

∫ ∞

0

√
logN(T, d, ε)dε.

Thus nothing is lost in expressing the chaining bound as an integral rather than a sum, up to a
constant factor.
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Remark 5.7 . It is worthing that we always have N(T, d, ε) = 1 when ε ≥ diam(T ). Thus, it is
sufficient to take integral up to ε = diam(T ).

Remark 5.8 It is not always the case that the bound by the Dudley integral is better than the one
step discretization bound. Note that N(T, d, ε) may approaches ∞ as ε approaches 0. Then the
Dudley integral in an indefinite integral at the point 0. If

√
logN(T, d, ε) diverges very fast, the

Dudley integral can be infinite. In this case the one step-discretization would still give a nontrivial
bound even when the covering number is not integrable. Thus, sometimes, it is useful to combine the
chaining method and the one step-discretization method to obtain a bound which mixes the Dudley
integral (from a point strictly larger than zero) and the uniform one step-discretization bound, see
for example Problem 5.11 in [2].

5.2 Examples

5.2.1 Gaussian Complexity of Bd2
Recall that the Gaussian complexity of Bd2 is given by

G(Bd2) = E

[
sup
t∈Bd

2

〈g, t〉
]
, g ∼ N (0, Id).

Letting Xt = 〈g, t〉, we known that Xt − Xs is ‖t − s‖22-sub-Gaussian. Moreover, the covering
number of (Bd2, ‖ · ‖2) at a scale 0 < ε < 1 can be bounded by (3/ε)d (see Lecture 4). Thus, by the
Dudley integral, we have

G(Bd2) .
∫ 1

0

√
logN(Bd2, ‖ · ‖2, ε)dε

=
√
d

∫ 1

0

√
log

3

ε
dε .

√
d,

which captures the correct order of G(Bd2), see Lecture 4.

5.2.2 A Failure Example

Let T =
{

ek√
1+log k

: k = 1, · · · , n
}

, where ek is the k-th canonical vector. Consider the Gaussian

complexity of T ,

G(T ) = E
[
sup
t∈T
〈g, t〉

]
, g ∼ N (0, Id).

Note that G(T ) can be explicitly written as

G(T ) = E

[
sup

k=1,··· ,n

gk√
1 + log k

]
.

Thus, it can be shown that there exists a universal constant C > 0 such that for all n,

G(T ) ≤ E

[
sup

k=1,··· ,n

|gk|√
1 + log k

]

4



=

∫ ∞

0
P

[
sup

k=1,··· ,n

|gk|√
1 + log k

≥ t
]
dt

=

∫ a

0
P

[
sup

k=1,··· ,n

|gk|√
1 + log k

≥ t
]
dt+

∫ ∞

a
P

[
sup

k=1,··· ,n

|gk|√
1 + log k

≥ t
]
dt

≤ a+
n∑

k=1

∫ ∞

a
P
[ |gk|√

1 + log k
≥ t
]
dt

≤ C (complete this step by choosing a properly!) .

However, we will show that the bound from the Dudley integral diverges as n → ∞. Here, we
consider the case n = 22

L
. First note that the first m vectors in T is 1/

√
logm separated. Thus,

the packing number satisfies
P (T, ‖ · ‖2, 1/

√
logm) ≥ m.

It follows that
∫ ∞

0

√
logN(T, ‖ · ‖2, ε)dε

≥
∫ 1

2
√

log(n)

0

√
logN(T, ‖ · ‖2, ε)dε

+

∫ 1

2

√
log(n1/2)
1

2
√

log(n)

√
logN(T, ‖ · ‖2, ε)dε

+ · · · · · ·

+

∫ 1

2

√
log

(
n1/2L

)

1

2

√
log

(
n1/2L−1

)

√
logN(T, ‖ · ‖2, ε)dε

≥
∫ 1

2
√

log(n)

0

√
logN

(
T, ‖ · ‖2,

1

2
√

log n

)
dε

+

∫ 1

2

√
log(n1/2)
1

2
√

log(n)

√√√√√logN


T, ‖ · ‖2,

1

2
√

log
(
n1/2

)


dε

+ · · · · · ·

+

∫ 1

2

√
log

(
n1/2L

)

1

2

√
log

(
n1/2L−1

)

√√√√√logN


T, ‖ · ‖2,

1

2
√

log
(
n1/2L

)


dε

≥
∫ 1

2
√

log(n)

0

√
logP

(
T, ‖ · ‖2,

1√
log n

)
dε
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+

∫ 1

2

√
log(n1/2)
1

2
√

log(n)

√√√√√logP


T, ‖ · ‖2,

1√
log
(
n1/2

)


dε

+ · · · · · ·

+

∫ 1

2

√
log

(
n1/2L

)

1

2

√
log

(
n1/2L−1

)

√√√√√logP


T, ‖ · ‖2,

1√
log
(
n1/2L

)


dε

≥ 1

2
+

1

2

(
1− 1√

2

)
L→∞ as L→∞,

where the third inequality follows from the relationship between covering number and packing
number, and the last one uses the note that the first m vectors in T is 1/

√
logm separated.

Thus, the Dudley inequality/integral is not able to capture the right bound for the Gaussian
complexity of T in this example. Next we will present a method that works well for this example.

5.3 Generic Chaining

Before introducing generic chaining, we first reformulate the Dudley inequality into an equivalent
form. To this end, we need to give the definition of admissible sequence. Let {Tk}∞k=1 be a sequence
of subsets of T . If

|T0| = 1, |Tk| ≤ 22
k
, k = 1, 2, · · · (5.3)

{Tk}∞k=1 is called an admissible sequence.

Lemma 5.9 We have

∫ ∞

0

√
logN(T, d, ε)dε � inf

{Tk}∞k=0

∞∑

k=0

2k/2 sup
t∈T

d(t, Tk), (5.4)

where the infimum is taken over all the admissible sequence satisfying (5.3).

Proof: First note that the righthand side (5.4) is equivalent to

∞∑

k=0

2k/2 inf
Tk

sup
t∈T

d(t, Tk).

Then letting ek(T ) = infTk supt∈T d(t, Tk), one can easily see that

e0(T ) = inf{ε : N(T, d, ε) = 1}, ek(T ) = inf{ε : N(T, d, ε) ≤ 22
k} for k ≥ 1.

Therefore, for ε < ek(T ), N(T, d, ε) ≥ 22
k

+ 1. It follows that

∫ ek(T )

ek+1(T )

√
logN(T, d, ε)dε & 2k/2(ek(T )− ek+1(T )).
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Consequently,

∫ e0(T )

0

√
logN(T, d, ε)dε &

∞∑

k=0

2k/2(ek(T )− ek+1(T ))

=
∞∑

k=0

2k/2ek(T )−
∞∑

k=1

2(k−1)/2ek(T )

≥
(

1− 1√
2

) ∞∑

k=0

2k/2ek(T ),

which completes the proof of one direction.
For the other direction, we have

∫ ∞

0

√
logN(T, d, ε)dε =

∫ e0(T )

0

√
logN(T, d, ε)dε

=
∞∑

k=0

∫ ek(T )

ek+1(T )

√
logN(T, d, ε)dε

.
∞∑

k=0

2(k+1)/2(ek(T )− ek+1(T ))

.
∞∑

k=0

2kek(T ).

Now the proof is complete.

Remark 5.10 The above lemma means that if we choose the sequence of covering numbers properly,
fixing the sequence of the covering numbers and computing the related covering errors is equivalent
to fixing the sequence of covering errors and computing the covering numbers in Dudley inequality.
The derivation above also reveals why it requires |Tk| ≤ 22

k
in the admissible sequence. Basically, we

would like to have a matching lower and upper bound for Dudley integral in the form of the righthand
of (5.4). Alternatively, if we want

√
logN(T, d, ε) to be integrable towards 0,

√
logN(T, d, ε) is at

most of order 1/
√
ε (other smaller than 1 power also be fine). Then, N(T, d, ε) ≈ e1/ε = e2

k
when

ε = 2−k.

The generic chaining will allow us to pull the supremum outside the sum and thus leads to a
potentially smaller bound.

Theorem 5.11 (Generic chaining) Let {Xt}t∈T be a separable sub-Gaussian process on the met-
ric space (T, d). Then

E
[
sup
t∈T

Xt

]
. γ(T, d) := inf

{Tk}∞k=0

sup
t∈T

∞∑

k=0

2k/2d(t, Tk), (5.5)

where the infimum is taken over all the admissible sequences.
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Proof: As before, we can still assume |T | <∞. Thus, it holds that

Xt −Xt0 =
K∑

k=1

(
Xπk(t) −Xπk−1

(t)
)
,

where πk(t) maps t to the closest point in Tk. The overall goal is to show that

P
[
sup
t∈T
|Xt −Xt0 | & uγ(T, d)

]
. exp

(
−u2/2

)
for u ≥ c,

where c > 0 is an absolute constant. The claim will then follow immediately.
To this end, we will consider each term in the chaining sum and then take a uniform bound.

Because |Xπk(t) −Xπk−1(t)| is d(πk(t), πk−1(t))2-sub-Gaussian, we have

P
[
|Xπk(t) −Xπk−1(t)| ≥ Cu2k/2d(πk(t), πk−1(t))

]
≤ 2exp

(
−u22k

)
, (5.6)

where C > 0 is an absolute and fixed constant. Let Ωu be the event such that

|Xπk(t) −Xπk−1(t)| ≤ Cu2k/2d(πk(t), πk−1(t)) for all t ∈ T and k.

Since there are at most |Tk||Tk−1| terms in |Xπ(t) −Xπk−1(t)|, we have

P [Ωc
u] ≤ 2

∑

k≥1
22

k+1
exp

(
−u22k

)
.

Note that whenever Ωu occurs, we have2

sup
t∈T
|Xt −Xt0 | ≤ Cu sup

t∈T

∞∑

k=1

2k/2d(πk(t), πk−1(t)).

Consequently,

P

[
sup
t∈T
|Xt −Xt0 | ≥ Cu sup

t∈T

∞∑

k=1

2k/2d(πk(t), πk−1(t))

]
≤ 2

∑

k≥1
22

k+1
exp

(
−u22k

)

Noting that d(πk(t), πk−1(t)) ≤ d(t, Tk) + d(t, Tk−1), we have

P
[
sup
t∈T
|Xt −Xt0 | & uγ(T, d)

]
≤ 2

∑

k≥1
22

k+1
exp

(
−u22k

)
.

Thus, it only remains to bound
∑

k≥1 22
k+1

exp
(
−u22k

)
. Noting that

u22k ≥ u2/2 + u22k−1 ≥ u2/2 + 2k+1

for u ≥ 2, one can easily obtain that
∑

k≥1 22
k+1

exp
(
−u22k

)
. exp

(
−u2/2

)
.

It is worth noting that the tail bound version of the Dudley integral and the generic chaining
can also be established, see for example [2] or [3]. The generic chaining bound is not as convenient
to use as the Dudley integral since constructing a good admissible sequence is not always easy.
However, the difference between the generic chaining bound and the Dudley integral can look
minor, but sometimes it is real. To see this, we revisit the failure example for the Dudley integral
in Section 5.2.2.

2Basically, the argument here tensorize well without first triggering the sup in the first place.
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Example 5.12 (Revisit of example in Section 5.2.2) Consider the case n = 22
L

. For no-
tational convenience, we let tk = ek/

√
1 + log k. For any admissible sequence {Tk} satisfying

|Tk| ≤ 22
k
, it is easy to show that

sup
t∈T

d(t, Tk) & 1/

√
1 + log 22k � 2−k/2.

Thus, the bound obtained from Dudley integral is about

L∑

k=1

O(1) = O(L)→∞.

In contrast, to apply generic chaining, we can construct an admissible sequence as follows:

T0 = {tn}, Tk = {t2, · · · , t22k , tn}, k = 1, · · · , L− 1.

Then give any t ∈ T , there exists a K such that the index of t satisfies 22
K
< i(t) ≤ 22

K+1
. It

follows that

∞∑

k=0

2k/2d(t, Tk) =

K∑

k=0

2k/2d(t, Tk) .
K∑

k=0

2(k−K)/2 = O(1).

Here tn is included in Tk in order for d(t, Tk) � 2−K/2, k ≤ K (independent of k). Because t is
arbitrary, we can conclude that the generic chaining can capture the right magnitude in this special
example.

Reading Materials

[1] Martin Wainwright, High Dimensional Statistics – A non-asymptotic viewpoint, Chapter 5.3.

[2] Ramon van Handel, Probability in High Dimension, Chapter 5.3.

[3] Roman Vershynin, High-Dimensional Probability: An introduction with applications in data
science, Chapter 8.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 6: Lower Bound of Suprema for Gaussian Process

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/04/07)

Recap and motivation: In the last few lectures, we have studied the upper bound for E [supt∈T Xt],
especially by Dudley inequality:

E
[
sup
t∈T

Xt

]
.
∫ ∞

0

√
logN(T, d, ε)dε,

where d is defined through the increments of the process. In a reverse direction, we can interpret
this result as measuring the complexity of a set via a random process, with Radamacher complexity
and Gaussian complexity as special examples.

In this section we study the lower bound of E [supt∈T Xt]. It is clear that we cannot expect
to obtain a nontrivial lower bound at the level of generality. For example, even in the case of
finite maxima, we have seen that the additional assumption of independence is needed to obtain a
meaningful lower bound. Otherwise, an extreme example would be E [supt∈T Xt] withXt = X for all
t. Therefore, in this lecture we will restrict our attention to the Gaussian process, whose additional
properties enable us to establish lower bound of E [supt∈T Xt] for certain random processes via
Gaussian comparison theorems. As before, we will always assume Xt is centered (i.e., E [Xt] = 0
for all t, unless stated otherwise).

Definition 6.1 (Gaussian process) The random process {Xt}t∈T is called a centered Gaussian
process if the random variables {Xt1 , · · · , Xtn} are centered and jointly Gaussian1 for all n ≥ 1 and
t1, · · · , tn ∈ T .

Recall that for the centered Gaussian random variable, its sub-Gaussian parameter is equal to
its variance. Thus, if we define

d(t, s) =
√

E [(Xt −Xs)2] = ‖Xt −Xs‖L2 . (6.1)

Then, a Gaussian process is a sub-Gaussian process on (T, d). Note d is usually referred to the
canonical metric defined on T and it is indeed a pseudo-metric but it satisfies the triangle inequality.
Gaussian process has additional properties that makes it easy to work with.

Agenda:

• Gaussian interpolation

• Gaussian comparison inequality

• Sudakov minoration inequality

• A short remark

1It is equivalent to that any linear combination of {Xt1 , · · · , Xtn} is Gaussian. Note that it is possible to construct
a set of random variables that are individually Gaussian but whose joint distribution is not Gaussian.
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6.1 Gaussian Interpolation

The proof of the Gaussian comparison inequality in the next section relies on a technique known
as Gaussian interpolation. First we have the multidimensional version of the Gaussian integration
by parts.

Lemma 6.2 (Gaussian integration by parts) Let X ∼ N (0,Σ), where Σ is an n×n variance
matrix. Then,

E [Xif(X)] =

n∑

j=1

ΣijE
[
∂f

∂xj
(X)

]
.

Proof: In the special 1-d case when X ∼ N (0, 1), the claim of the lemma reduces to

E [Xf(X)] = E
[
f ′(X)

]
,

which follows immediately after we apply the integration by part to

E
[
f ′(X)

]
=

1√
2π

∫ ∞

−∞
f ′(x)e−

x2

2 dx.

In general, first note that letting Z ∼ N (0, In), then X has the same distribution as Σ1/2Z. Thus,

E [Xif(X)] =

n∑

k=1

Σ
1/2
ik E

[
Zkf(Σ1/2Z)

]
=

n∑

k=1

Σ
1/2
ik E [Zkg(Z)] ,

where g(z) = f(Σ1/2z) and hence

∂g

∂zk
(z) =

n∑

j=1

Σ
1/2
jk

∂f

∂xj
(Σ1/2z).

Since the result for the special 1-d case implies (noting Zk are independent)

E [Zkg(Z)] = E
[
∂g

∂zk
(Z)

]
=

n∑

j=1

Σ
1/2
jk E

[
∂f

∂xj
(Σ1/2Z)

]
,

we have

E [Xif(X)] =

n∑

k=1

Σ
1/2
ik E [Zkg(Z)]

=

n∑

k=1

Σ
1/2
ik

n∑

j=1

Σ
1/2
jk E

[
∂f

∂xj
(Σ1/2Z)

]

=

n∑

j=1

(
n∑

k=1

Σ
1/2
ik Σ

1/2
jk

)
E
[
∂f

∂xj
(Σ1/2Z)

]

=
n∑

j=1

ΣijE
[
∂f

∂xj
(X)

]
,

as desired.
Using the Gaussian integration by parts property, we are ready to present and prove the Gaus-

sian interpolation result.
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Lemma 6.3 Let X ∼ N (0,ΣX) and Y ∼ N (0,ΣY ) be two independent n-dimensional Gaussian
vectors. Define

Z(t) =
√
tX +

√
1− tY, t ∈ [0, 1].

Then for every smooth function f we have

d

dt
E [f(Z(t))] =

1

2

n∑

i,j=1

(
ΣX
ij − ΣY

ij

)
E
[
∂2f

∂zi∂zj
(Z(t))

]
.

Proof: By the chain rule we have

d

dt
E [f(Z(t))] =

n∑

i=1

E
[
∂f

∂zi
(Z(t))

dZi
dt

]

=
1

2

n∑

i=1

E
[
∂f

∂zi
(Z(t))

Xi√
t

]
− 1

2

n∑

i=1

E
[
∂f

∂zi
(Z(t))

Yi√
1− t

]
.

Considering the first term, as X and Y are independent, we can apply Lemma 6.2 to X (con-
ditioned on Y ). More precisely, letting g(X) = g(X1, · · · , Xn) = f(

√
tX1 +

√
1− tY1, · · · ,

√
tXn +√

1− tYn) = f(Z(t)), then

∂g

∂xi
(X) =

√
t
∂f

∂zi
(Z(t)) and

∂2g

∂xi∂xj
(X) = t

∂2f

∂zi∂zj
(Z(t)).

It follows that

n∑

i=1

E
[
∂f

∂zi
(Z(t))

Xi√
t

]
=

1

t

n∑

i=1

E
[
∂g

∂xi
(X)Xi

]

=
1

t

n∑

i=1

n∑

j=1

ΣX
ijE
[

∂2g

∂xi∂xj
(X)

]

=
n∑

i=1

n∑

j=1

ΣX
ijE
[
∂2f

∂zi∂zj
(X)

]
.

Since the second term can be bounded similarly, the proof is complete.

6.2 Gaussian Comparison Inequality

Theorem 6.4 (Sudakov-Fernique inequality) Let {Xt}t∈T and {Yt}t∈T be two mean zero sep-
arable Gaussian processes. Suppose

E
[
|Xt −Xs|2

]
≥ E

[
|Yt − Ys|2

]
for all t, s ∈ T.

Then,

E
[
sup
t∈T

Xt

]
≥ E

[
sup
t∈T

Yt

]
.
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This theorem is very intuitive: if {Xt}t∈T has larger pairwise variance than {Yk}t∈T , then E [supt∈T Xt] ≥
E [supt∈T Yt]. It is enough to establish the theorem for two Gaussian vectors X ∼ N (0,ΣX) and
Y ∼ N (0,ΣY ) . Moreover, we can assume X and Y are independent; otherwise we can consider
an independent copy of one of them.

Proof: For any β > 0 define

fβ(x) =
1

β
log

n∑

k=1

eβxk .

It is not hard to see that (check this!)

max
k=1,··· ,n

xk ≤ fβ(x) ≤ max
k=1,··· ,n

xk +
log n

β
.

Thus, fβ(x)→ maxk=1,··· ,n xk as β →∞. Moreover,

∂f

∂zk
=

eβxk∑n
k=1 e

βxk
=: pk(x),

∂2f

∂zk∂zj
= β (δkjpk(x)− pk(x)pj(x)) ,

where δkj equals 1 if k = j and equals 0 otherwise. It follows from Lemma 6.3 that

d

dt
E [fβ(Z(t))] =

1

2

n∑

k,j=1

(
ΣX
kj − ΣY

kj

)
E
[
∂2fβ
∂zk∂zj

(Z(t))

]

=
β

2

n∑

k=1

(
ΣX
kk − ΣY

kk

)
E [pk(Z(t))(1− pk(Z(t)))]− β

2

∑

k 6=j

(
ΣX
kj − ΣY

kj

)
E [pk(Z(t))pj(Z(t))] .

Noting that 1− pk(x) =
∑

j 6=k pj(x), we have

n∑

k=1

(
ΣX
kk − ΣY

kk

)
E [pk(Z(t))(1− pk(Z(t)))] =

∑

k 6=j

(
ΣX
kk − ΣY

kk

)
E [pk(Z(t))pj(Z(t))]

=
∑

k 6=j

(
ΣX
jj − ΣY

jj

)
E [pk(Z(t))pj(Z(t))] .

It follows that

d

dt
E [fβ(Z(t))] =

∑

k 6=j

β

4

(
ΣX
kk − 2ΣX

kj + ΣX
jj

)
E [pk(Z(t))pj(Z(t))]−

∑

k 6=j

β

4

(
ΣY
kk − 2ΣY

kj + ΣY
jj

)
E [pk(Z(t))pj(Z(t))]

=
β

4

∑

k 6=j

(
E
[
|Xk −Xj |2

]
− E

[
|Yk − Yj |2

])
E [pk(Z(t))pj(Z(t))]

≥ 0,

where in the last line we have used the assumption. Thus fβ(Z(t)) is increasing in t, yielding

E [fβ(X)] ≥ E [fβ(Y )] .
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Letting β →∞ concludes the proof.
There are also other types of Gaussian comparison inequalities such as the Slepian inequality or

the Gordon inequality, which can be proved similarly, see for example [3]. The Gaussian comparison
inequalities have many interesting applications. Here we give an example before presenting its
application on the lower bound for the expectation of suprema of the Gaussian process.

Example 6.5 (Spectral norm of Gaussian matrices) Let W ∈ Rm×n be a random matrix
with i.i.d N (0, 1) entries. By the the finite approximation bound in Lecture 4, we have

E [‖W‖2] ≤ C(
√
m+

√
n).

Next we can show that the bound can be sharpened to

E [‖W‖2] ≤
√
m+

√
n

by the Sudakov-Fernique inequality2. We still begin with the variational form for ‖W‖2,

‖W‖2 = sup
u∈Bm

2 ,v∈Bn
2

uTWv =: sup
u∈Bm

2 ,v∈Bn
2

Yuv.

We have

E
[
|Yuv − Yts|2

]
= E




∑

ij

Wkj(uivj − tisj)




2


=
∑

ij

(uivj − tisj)2

= ‖uvT − tsT ‖2F
≤ ‖u− t‖22 + ‖v − s‖22.

If we construct another Gaussian process as follows,

Xuv = 〈g, u〉+ 〈h, v〉 , g ∼ N (0, Im), h ∼ N (0, In).

it is easy to see that E
[
|Xuv −Xts|2

]
= ‖u− t‖22 + ‖v − s‖22. Thus, applying the Sudakov-Fernique

inequality yields

E

[
sup

u∈Bm
2 ,v∈Bn

2

uTWv

]
≤ E

[
sup

u∈Bm
2 ,v∈Bn

2

〈g, u〉+ 〈h, v〉
]

= E

[
sup
u∈Bm

2

〈g, u〉
]

+ E

[
sup
v∈Bn

2

〈h, v〉
]

= G(Bm2 ) + G(Bn2 )

≤ √m+
√
n.

It is worth noting that this example is a special case of the Chevet theorem which considers the
problem on a compact subsets of the unit spheres.

2However, note that the finite approximation bound works for all the general sub-Gaussian matrices, not only the
standard Gaussian matrices.

5



6.3 Sudakov Minoration Inequality

Theorem 6.6 (Sudakov minoration inequality) Let {Xt}t∈T be a centered Gaussian process.
Then

E
[
sup
t∈T

Xt

]
& sup

ε>0
ε
√

logN(T, d, ε),

where d is the canonical metric defined in (6.1).

Proof: For any ε > 0, let P be ε-packing of T under the canonical metric with the packing
number P (T, d, ε). Let X = {Xt}t∈P and let Y = {Yt}t∈P be a vector of length P (T, d, ε) with i.i.d

N (0, ε
2

2 ) variables. Then,

E
[
|Xt −Xs|2

]
= d(t, s)2 ≥ ε2 = E

[
|Yt − Ys|2

]
.

Thus the Sudakov-Fernique inequality yields

E
[
sup
t∈P

Xt

]
≥ E

[
sup
t∈P

Yt

]
� ε
√

logP (T, d, ε) ≥ ε
√

logN(T, d, ε),

where the last inequality follows from the relationship N(T, d, ε) ≤ P (T, d, ε).
Sudakov minoration inequality can be used in two different ways: converting lower bound of

covering number into lower bound of the suprema of Gaussian process, and converting upper bound
of the suprema of Gaussian process into upper bound of covering number.

Example 6.7 (Lower bound on suprema of i.i.d Gauss) We have already shown in Lecture 4
that

E
[

max
k=1,··· ,n

gk

]
&
√

log n

for i.i.d standard Gaussian random variables gk. The lower bound actually can also be established
via Sudakov minoration inequality. First note that

max
k=1,··· ,n

gk = max
t∈T
〈g, t〉,

where T = {e1, · · · , en} and g ∈ N (0, In). Since for sufficiently small ε, N(T, ‖ · ‖2, ε) = n, it
follows immediately that E [maxk=1,··· ,n gk] &

√
log n.

Example 6.8 (Gaussian width of unit 2-norm ball Bd2) In Lecture 4, we have seen that

G(Bd2) = E

[
sup
t∈Bd

2

〈g, t〉
]
�
√
d,

where the lower bound is obtained via the comparison with the corresponding Rademacher complex-
ity. Since 〈g, t〉 is a Gaussian process with the canonical metric given by

d(t, s) =
√

E [| 〈g, t− s〉 |2] = ‖t− s‖2,
we can also use the Sudakov minoration inequality to get the lower bound,

G(Bd2) & ε
√

logN(Bd2, ‖ · ‖2, ε) � ε
√
d log

1

ε
�
√
d

after choosing a proper ε.
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Example 6.9 (Lower bound on spectral norm of Gaussian matrices) In Example 6.5, we
have seen that

E [‖W‖2] ≤
√
m+

√
n

for an m × n Gaussian random matrix. The Sudakov minoration inequality can be used to show
that this bound is sharp in terms of the scaling. Recall that

‖W‖2 = sup
u∈Bm

2 ,v∈Bn
2

uTWv =: sup
u∈Bm

2 ,v∈Bn
2

Yuv.

The application of the Sudakov minoration inequality yields that (complete the details!)

E [‖W‖2] & ε
√

logN(Bm2 ⊗ Bn2 , ‖ · ‖F , ε)

& ε
√

log (N(Bm2 , ‖ · ‖2, ε) ·N(Bn2 , ‖ · ‖2, ε))

� ε
√

(m+ n) log
1

ε

&
√
m+

√
n

after choosing ε properly.

Example 6.10 (Metric entropy of unit 1-norm ball Bd1 under the Euclidean distance) We
have already seen that

G(Bd1) = E

[
sup
t∈Bd

1

〈g, t〉
]
�
√

log d.

Together with the Sudakov minoration inequality, we have

logN(Bd1, ‖ · ‖2, ε) .
1

ε2
log d.

Up to constant, this result matches the bound for the covering number of a convex hull of a finite
set due to Maurey. Noting that

logN(Bd2, ‖ · ‖2, ε) � d log
1

ε
,

we can see in a different way that the unit 1-norm ball is much smaller than the unit 2-norm ball.

6.4 A Short Remark

Combining the Sudakov minoration inequality with the Dudley inequality/integral, we have for the
Gaussian process {Xt}t∈T

sup
k

2−k
√

logN(T, d, 2−k) . E
[
sup
t∈T

Xt

]
.
∑

k

2−k
√

logN(T, d, 2−k).
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In some situations, the upper and lower bounds are not as far apart as may appear at first sight
because the term 2−k

√
logN(T, d, 2−k) behaves like a geometric sequence so that their sum is of

the same order as the largest one (for example, consider Example 6.8). However, there are also
cases where there is indeed a gap between these two bounds. It turns out the generic chaining
bound is tight for Gaussian processes, i.e.,

E
[
sup
t∈T

Xt

]
� γ(T, d),

see Section 3 of Lecture 6 for the definition of γ(T, d). This is the notable Talagrand majorizing
measure theorem. We will omit the details, see for example [2] and [3]. For stationary Gaussian
process, Dudley integral is also tight.

Reading Materials

[1] Martin Wainwright, High Dimensional Statistics – A non-asymptotic viewpoint, Chapter 5.4.

[2] Ramon van Handel, Probability in High Dimension, Chapter 6.1.

[3] Roman Vershynin, High-Dimensional Probability: An introduction with applications in data
science, Chapter 7.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 7: Uniform LLN, VC Dimension and Applications

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/04/28)

Motivation: We are interested in bounding the random variable

sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ , (7.1)

where F is a class of functions. That is, we want to estimate the deviation between 1
n

∑n
k=1 f(Xk)

and E [f(X)] uniformly over the class F – hence the name of uniform laws of large numbers (ULLN).
Here, we ignore the measurability issue after taking the supremum. This problem arises in a wide
range of applications. We first give several typical examples.

Wasserstein law of large numbers Let X1, · · · , Xn be i.i.d samples from a population measure
P, where P is a probability measure on [0, 1]. Define the following empirical measure

Pn =
1

n

n∑

k=1

δXk
.

Then a natural question is how well Pn stands for P. For a realization, the Wasserstein distance
between Pn and P is given by

W1(Pn,P) = sup
f∈F
|EPn [f(Z)]− EP[f(Z)]|

where F = {f ∈ Lip ([0, 1], | · |) : 0 ≤ f ≤ 1} is a set of 1-Lipschitz functions. It is evident that
W1(Pn, P ) is in the form of (7.1). In this case, the related result is also known as Wasserstein law
of large numbers.

Classical Glivenko–Cantelli theorem Letting X ∼ P, the cumulative distribution function
(CDF) F (a) is given by F (a) = P [X ≤ a]. Given a set of i.i.d samples {Xk}nk=1, we can estimate
F by the empirical CDF,

F̂n(a) =
1

n

n∑

k=1

1(−∞,a](Xk),

i.e., the empirical frequency over (−∞, a]. Then it is natural to ask whether
∣∣∣F̂n(a)− F (a)

∣∣∣ is small uniformly for all a ∈ R?

The classical Glivenko–Cantelli theorem answers this question in an affirmative way. Letting F =
{1(−∞,a](x) : a ∈ R}, since E

[
1(−∞,a](X)

]
= F (a), we actually need to bound (7.1), where F is

given by

F = {1(−∞,a], a ∈ R}. (7.2)

1



Generalization analysis in statistical learning Given a pair of random variables (X,Y ), a
central task in statical learning is to find the relationship between X and Y . This is typically
formed as the problem of finding a function (hypothesis) h in a function class H such that the
population risk

R(h) = E [L(h(X), Y )]

is minimized. Here L(·, ·) represents certain loss function. However, since we do not know the
distribution of by only have access to a set of i.i.d samples X1, · · · , Xn, a computationally tractable
alternative is to minimize the empirical risk,

R̂n(h) =
1

n

n∑

k=1

L(h(Xk), Yk).

Letting h∗ be the minimizer of R(h) and ĥ∗n be the minimizer of R̂n(h), in order for ĥ∗n to generalize
well for the entire distribution, we wish R(ĥ∗n) should be close to R(h∗). This can be achieved if
R̂n(h) is close to R(h) for all h ∈ H since then they will have their minimizers close to each other.
More precisely, the excess risk defined by R(ĥ∗n)−R(h∗) satisfies

R(ĥ∗n)−R(h∗) =
(
R(ĥ∗n)− R̂n(ĥ∗n)

)
+
(
R̂n(ĥ∗n)− R̂n(h∗)

)
+
(
R̂n(h∗)−R(h∗)

)

≤
∣∣∣R(ĥ∗n)− R̂n(ĥ∗n)

∣∣∣+
∣∣∣R̂n(h∗)−R(h∗)

∣∣∣

≤ 2 sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ . (7.3)

Thus, in order to bound the generalization error R(ĥ∗n)−R(h∗), it suffices to bound

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ = sup

h∈H

∣∣∣∣∣
1

n

n∑

k=1

L(h(Xk), Yk)− E [L(h(X,Y ))]

∣∣∣∣∣ (7.4)

If we define

f(Z1, · · · , Zn) := sup
h∈H

∣∣∣∣∣
1

n

n∑

k=1

L(h(Xk), Yk)− E [L(h(X), Y )]

∣∣∣∣∣ , where Zk = (Xk, Yk),

it is easy to see that (7.4) is a special case of (7.1).

Under some proper conditions (e.g., ‖f‖∞ ≤ b for f ∈ F), it is easy to show that the quantity
in (7.1) concentrates around its mean, for example by bounded difference inequality. Thus, we will
focus on its expectation

E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
. (7.5)

Note that when there is single function in F , we have

E

[∣∣∣∣∣
1

n

n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
. 1√

n

2



under some mild moment assumptions. It is intriguing to see whether this is also true when F has
many functions, which is also the desirable goal to pursue.

Agenda:

• Wasserstein Law of Large Numbers

• Symmetrization, VC Dimension

• Classical Glivenko-Cantelli Theorem

• Statistical Learning

7.1 Wasserstein Law of Large Numbers

In this section, we consider (7.5) for the case

F = {f ∈ Lip ([0, 1], | · |) : 0 ≤ f ≤ 1}.
The following theorem establishes the covering number of F under the infinity norm.

Lemma 7.1 There is a numerical constant c > 0 such that

N(F , ‖ · ‖∞, ε) ≤ ec/ε for ε <
1

2
and N(F , ‖ · ‖∞, ε) = 1 for ε ≥ 1

2
.

Proof: The claim N(F , ‖ ·‖∞, ε) = 1 for ε ≥ 1
2 is trivial since

∥∥f − 1
2

∥∥
∞ ≤

1
2 for each f ∈ F . The

proof of the first claim is basically based on approximating f with piecewise constant functions,
see [2] for details.

7.1.1 First Effort via Finite Approximation

For ease of notation, let Zf = 1
n

∑n
k=1 f(Xk)− E [f(X)]. First note that Zf is 1/4n-sub-Gaussian

since f ∈ [0, 1] (check this!). Letting N be the ε-net of (F , ‖ · ‖∞), by Lemma 7.1, we have
N(F , ‖ · ‖∞, ε) ≤ ec/ε, for ε < 1/2. Thus,

E

[
sup
f∈F
|Zf |

]
≤ inf

0<ε<1/2

{
E

[
sup
f∈F
|Zf − Zπ(f)|

]
+

√
c

2nε

}

Moreover, we have

|Zf − Zπ(f)| =
∣∣∣∣∣

(
1

n

n∑

k=1

(f(Xk)− π(f)(Xk))

)
+ E [π(f)(X)− f(X)]

∣∣∣∣∣

≤ 2

n

n∑

k=1

‖f − π(f)‖∞

≤ 2ε.

It follows that

E

[
sup
f∈F
|Zf |

]
≤ inf

0<ε<1/2

{
2ε+

√
c

2nε

}
� n−1/3,

which is sub-optimal.
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7.1.2 Second Effort via Dudley Integral

With the same definition of Zf as in the last subsection, we have that

Zf − Zg =
1

n

n∑

k=1

(f(Xk)− g(Xk)− (E [f(Xk)]− E [g(Xk)])

is 1
n‖f − g‖2∞-sub-Gaussian. Thus, if we define

d(f, g) = n−1/2‖f − g‖∞,

then Zf − Zg is d(f, g)2-sub-Gaussian. In addition, it is easily seen that (check this!)

N(F , n−1/2‖ · ‖∞, ε) = N(F , ‖ · ‖∞, n1/2ε).

Thus, the application of the Dudley integral (note that 0 ∈ F) yields

E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣

]
.
∫ ∞

0

√
logN(F , ‖ · ‖∞, n1/2ε)dε

=
1√
n

∫ ∞

0

√
logN(F , ‖ · ‖∞, ε)dε

=
1√
n

∫ 1/2

0

√
c

ε
dε

� 1√
n
.

7.2 Symmetrization, VC Dimension

For the problem in the last section, the infinite norm can be used to bring out the sub-Gaussian
nature of the process, and thus the tight 1/

√
n bound can be established via Dudley integral.

However, for many cases, it is not efficient to bound the increments using the infinite norm and
weaker metrics should be considered. Consider F given in (7.2). Since

‖1(−∞,a] − 1(−∞,a′]‖∞ = 1 whenever a 6= a′,

we have N(F , ‖ · ‖∞, ε) = ∞ for ε < 1. Thus, substituting this into Dudley integral is not quite
meaningful. The symmetrization argument provides a way to overcome this pitfall, which allows us
to use the Dudley integral based on covering under potentially a smaller distance through separating
the sign (or “Gaussian part”) out from its magnitude . To motivate the symmetrization argument,
consider the random variable

∑n
k=1Xk where Xk are independent mean zero random variables.

When the magnitude of each Xk is of the order O(1), a naive bound for |∑n
k=1Xk| would be O(n).

However, by the central limit theorem, a more desirable bound would be O(
√
n). This is due to

that the terms in the sum are independent and centered, so they are likely to have opposite signs,
yielding the cancellation effect. Therefore, the random sign

∑n
k=1 sign(Xk) plays an essential role

in the Gaussian tail while the magnitudes of Xk only determine the variance.
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7.2.1 Symmetrization

As already mentioned, the symmetrization technique separates the sign (or “Gaussian part”) of
the process out from its magnitude and analyze each part sequentially. This allows us to provide
bounds for (7.1) more efficiently.

Lemma 7.2 (Upper bound by symmetrization) Let {Xk}nk=1 be i.i.d random variables. Then,

E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
≤ 2EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εkf(Xk)

∣∣∣∣∣

]
,

where {εk}nk=1 is a collection of i.i.d Rademacher random variables.

Proof: Let {Yk}nk=1 be i.i.d copies of {Xk}nk=1. We have

E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(X)])

∣∣∣∣∣

]
= EX

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− EY [f(Yk)])

∣∣∣∣∣

]

= EX

[
sup
f∈F

∣∣∣∣∣EY
[

n∑

k=1

(f(Xk)− f(Yk))

]∣∣∣∣∣

]

≤ EX

[
sup
f∈F

EY

[∣∣∣∣∣
n∑

k=1

(f(Xk)− f(Yk))

∣∣∣∣∣

]]

≤ EX,Y

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− f(Yk))

∣∣∣∣∣

]
.

where the third line follows from Jensen inequality. Noting that f(Xk) − f(Yk) is symmetric and
thus has the same distribution with εk(f(Xk)− f(Yk)), it follows that

E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(X)])

∣∣∣∣∣

]
≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(εk(f(Xk)− f(Yk)))

∣∣∣∣∣

]

≤ EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εkf(Xk)

∣∣∣∣∣

]
+ EY,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εkf(Yk)

∣∣∣∣∣

]
,

which completes the proof since {Yk}nk=1 are i.i.d copies of {Xk}nk=1.

Lemma 7.3 (Lower bound by symmetrization) Let {Xk}nk=1 be i.i.d random variables. Then,

E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
≥ 1

2
EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εk (f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
,

where {εk}nk=1 is a collection of i.i.d Rademacher random variables.

Proof: We have

EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εk (f(Xk)− EX [f(Xk)])

∣∣∣∣∣

]
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= EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εk (f(Xk)− EY [f(Yk)])

∣∣∣∣∣

]

≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εk (f(Xk)− f(Yk))

∣∣∣∣∣

]

= EX,Y

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− f(Yk))

∣∣∣∣∣

]

≤ E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
+ E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Yk)− E [f(Yk)])

∣∣∣∣∣

]
,

which completes the proof since {Yk}nk=1 are i.i.d copies of {Xk}nk=1.

Remark 7.4 Note the right hand side in Lemma 7.3 cannot be replaced by EX,ε
[
supf∈F |

∑n
k=1 εkf(Xk)|

]

since a counter example can be easily constructed for the n = 1 case.

To upper bound (7.5), by Lemma 7.2, it suffices to bound

EX,ε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εkf(Xk)

∣∣∣∣∣

]
. (7.6)

For this, we can first condition on X = (x1, · · · , xn) and bound

Eε

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

εkf(xk)

∣∣∣∣∣

]
(7.7)

and then take expectation with respect to X. It follows that

E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
.

√√√√E

[
sup
f∈F

n∑

k=1

f2(Xk)

]
√

log ΠF (n), (7.8)

where

ΠF (n) := max
{x1,··· ,xn}⊂X

|{(f(x1), · · · , f(xn)) : f ∈ F}| . (7.9)

Note that when |F| = ∞ in which case a direct bound uniform bound for (7.5) fails. In contrast,
it is possible that ΠF (n) is finite (e.g., when F a class of binary value functions for classification
problems). Assuming ‖f‖∞ ≤ b for all f ∈ F , we can still work out an upper bound for (7.5)
through (7.7) and obtain

E

[
sup
f∈F

∣∣∣∣∣
n∑

k=1

(f(Xk)− E [f(Xk)])

∣∣∣∣∣

]
.

√√√√E

[
sup
f∈F

n∑

k=1

f2(Xk)

]
√

log ΠF (n) ≤ √nb
√

log ΠF (n).

(7.10)

Next we will focus on the case when F a class of binary value functions (and hence ΠF (n) is
finite, at most 2n). It can be shown that the growth of ΠF (n) is determined by a notion called VC
dimension. In other words, VC dimension provides a different way to quantify the complexity of
the function class F . Though we only discuss the VC dimension for the families of binary value
functions, it can be extended to general classes of functions, see for example Chapter 7.3 of [2].
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7.2.2 VC Dimension

Definition 7.5 (Shattering and VC dimension) Let F be a class of binary value functions.
We say a set (x1, · · · , xn) ⊂ X is shattered by F if

|{(f(x1), · · · , f(xn)) : f ∈ F}| = 2n.

The VC dimension of F , denoted v(F) or simply v for short, is defined as the largest integer n for
which there exists a collection of points (x1, · · · , xn) that is shattered by F .

Remark 7.6 By the definition, when n > v, then for any collection of points (x1, · · · , xn),

|{(f(x1), · · · , f(xn)) : f ∈ F}|

must be exactly smaller than 2n. In terms of the growth function in (7.9), the VC dimension is the
largest integer n such that ΠF (n) = 2n.

Exercise 7.7 If there exists n points that can be shattered, why for any m < n there exists m
points hat can also be shattered? If there does not exist n points that can be shattered, why for any
m > n there does not exist m points that can be shattered?

Figure 7.1: Example I

Example 7.8 Figures 7.1, 7.2 and 7.3 give three examples with finite VC dimension, where

F = {1S(x), S ∈ S} .

There also exists set S such that the VC dimension of F is infinite, see [3].

For the function class having a finite VC dimension, it turns out its growth function is of the
polynomial order in n.
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Figure 7.2: Example II

Lemma 7.9 (Sauer-Shelah) For all n ≥ v and (x1, · · · , xn) ⊂ X , there holds

ΠF (n) := max
{x1,··· ,xn}⊂X

|{(f(x1), · · · , f(xk)) : f ∈ F}| ≤
v∑

k=0

(
n

k

)
≤
(en
v

)v
.

Proof: The second inequality follows directly from the combinatorial argument

v∑

k=0

(
n

k

)
≤

v∑

k=0

(
n

k

)(n
v

)v−k

≤
n∑

k=0

(
n

k

)(n
v

)v−k

=
(n
v

)v n∑

k=0

(
n

k

)( v
n

)k

=
(n
v

)v
(1 + v/n)n

≤
(en
v

)v

The first inequality follows from an inductive argument and the details will be omitted. Interested
readers may find them in [1] and [3].

Note that Lemma 7.9 is a truly deep result. For n > v(F), though the definition of VC dimension
implies that |{(f(x1), · · · , f(xn)) : f ∈ F}| < 2n for any (x1, · · · , xn), this does not exclude the
possibility that there exists a (x1, · · · , xn) such that |{(f(x1), · · · , f(xn)) : f ∈ F}| = 2n − 1.
However, the Sauer-Shelah lemma says that this cannot be true.
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Figure 7.3: Example III

Exercise 7.10 For the three examples in Example 7.8, show that |{(f(x1), · · · , f(xn)) : f ∈ F}| .
nv directly rather that using the Sauer-Shelah lemma.

7.3 Classical Glivenko-Cantelli Theorem

In this section we return back to the problem of estimating E
[
‖F̂n − F‖∞

]
, where F and F̂n are

CDF and empirical CDF, respectively. It corresponds to estimating (7.5) for F = {1(−∞,a](x) : a ∈
R}. By Example 7.8, we first know that v(F) = 1. It follows from the Sauer-Shelah lemma that
Πn(F) . n. Together with (7.10), we have

E
[
‖F̂n − F‖∞

]
.
√

log n

n
, (7.11)

Remark 7.11 By certain central limit theorem (Kolmogorov theorem), one can directly show that
the optimal rate for ‖F̂n − F‖∞ is 1/

√
n. Next, we will remove the log-factor in (7.11) by more

advanced technique.
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Let F = {1C , C ⊂ X} be the set of binary value functions defined on a probability space (X ,P).
For any f, g ∈ F , we define

‖f − g‖L2(P) =

(∫

X
(f(x)− g(x))2dP(x)

)1/2

.

Lemma 7.12 There is a numerical constant c > 0 such that

N(F , ‖ · ‖L2(P), ε) ≤
(c
ε

)cv
for ε < 1.

where v is the VC dimension of F .

The proof of Lemma 7.12 relies on the following lemma.

Lemma 7.13 Let f1, · · · , fn be functions on (X ,P). If

‖fi‖∞ ≤ 1, ‖fi − fj‖L2(P) > ε for all i 6= j,

then there exists m � ε−4 log n points x1, · · · , xm such that

1

m

m∑

k=1

|fi(xk)− fj(xk)|2 > ε2/4 for all i 6= j. (7.12)

Proof: The proof of this lemma uses a very interesting probabilistic argument: we first choose
m points randomly and then show (7.12) holds with high probability. Then there must exist such
m deterministic points. More precisely, let X1, · · · , Xm ∼ P be i.i.d samples. The application of
Hoeffding inequality implies that

P

[
1

m

m∑

k=1

(
|fi(Xk)− fj(Xk)|2 − E

[
|fi(Xk)− fj(Xk)|2

])
≤ −t

]
≤ exp

(
−mt

2

2

)
.

Noting that

E

[
1

m

m∑

k=1

|fi(Xk)− fj(Xk)|2
]

= E
[
|fi(Xk)− fj(Xk)|2

]
= ‖fi − fj‖2L2(P) > ε2,

we have

P

[
1

m

m∑

k=1

|fi(Xk)− fj(Xk)|2 ≤
ε2

4

]
≤ exp

(
−mε

4

4

)
.

Now a union bound gives

P

[
1

m

m∑

k=1

|fi(Xk)− fj(Xk)|2 ≥
ε2

4
for all i 6= j

]
≥ 1− n2exp

(
−mε

4

4

)
> 0

provided m � ε−4 log n.
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Proof: [of Lemma 7.12] Let f1, · · · , fn be an maximal ε-packing of (F , ‖ · ‖L2(P)). By Lemma 7.13,
there exist m � ε−4 log n points x1, · · · , xm such that

1

m

m∑

k=1

|fi(xk)− fj(xk)|2 > ε2/4 for all i 6= j.

Thus, letting Fn = {f1, · · · , fn},
n = |{(fi(x1), · · · , fi(xm)) : fi ∈ Fn}| .

Note that the VC dimension of Fn is less or equal than the VC dimension of F . By the Sauer-Shelah
lemma we have

n ≤
(em
v

)v
≤
(
cε−4 log n

v

)v
,

and the claim follows after some simple calculus.

Theorem 7.14 (Glivenko-Cantelli) We have E
[
‖F̂n − F‖∞

]
. 1√

n
.

Proof: For fixed (x1, · · · , xn), let

Zf =
1√
n

n∑

k=1

εkf(xk).

Noting that Zf − Zg = 1√
n

∑n
k=1 εk(f(xk) − g(xk)) is 1

n

∑n
k=1(f(xk) − g(xk))

2-sub-Gaussian (see

Lecture 1). Thus, if we define the metric

d(f, g) =

√√√√ 1

n

n∑

k=1

(f(xk)− g(xk))2,

then Zf − Zg is d(f, g)2-sub-Gaussian. Let F̃ = {F , 0}, namely we add a 0 function to F . Note

that we still have v(F̃) = 1 (check this!). Thus, Lemma 7.12 implies that

N(F̃ , d, ε) ≤
(c
ε

)c
, for ε < 1,

where c > 0 is a universal constant. Moreover, it is easy to see that d(f, g) ≤ 1 for any f, g ∈ F̃ ,
and thus diam(F) ≤ 1. By the Dudley integral (also noting Remark 6.4) we have

Eε

[
sup
f∈F

∣∣∣∣∣
1√
n

n∑

k=1

εkf(xk)

∣∣∣∣∣

]
= Eε

[
sup
f∈F̃

∣∣∣∣∣
1√
n

n∑

k=1

εkf(xk)− 0

∣∣∣∣∣

]

.
∫ 1

0

√
logN(F̃ , d, ε)dε

= O(1),

where O(1) means a constant. Thus,

E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣

]
. EX,ε

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

εkf(Xk)

∣∣∣∣∣

]
. 1√

n
.

The proof is now complete.
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7.4 Statistical Learning

In this section, we study the generalization error analysis problem in statistical learning, as intro-
duced at the beginning of this lecture. For simplicity, consider the classification problem where
Y = T (X) and T is a fixed Boolean function on X . Moreover, we consider the case where L is
squared loss,

L(h(Xk), Yk) = |h(Xk)− Yk|2 = |h(Xk)− T (Xk)|2.

Therefore, by (7.3), we have

R(ĥ∗n)−R(h∗) ≤ 2 sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣

= 2 sup
h∈H

∣∣∣∣∣
1

n

n∑

k=1

(
|h(Xk)− T (Xk)|2 − E

[
|h(Xk)− T (Xk)|2

])
∣∣∣∣∣

= 2 sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣ ,

where f = |h−T |2, F = {|h−T |2, h ∈ H}. Assume H is a set of Boolean functions: {1C , C ⊂ X}.
We have the following result.

Lemma 7.15 For any set of points (x1, · · · , xn), define d(f, g) =
√

1
n

∑n
k=1(f(xk)− g(xk))2. Then

N(F , d, ε) ≤ N(H, d, ε).

Proof: Since both h and T are Boolean functions, so does h− T . Thus,

|h− T |2 = |h− T |.

It follows that

||h1 − T |2 − |h2 − T |2| = ||h1 − T | − |h2 − T || ≤ |h1 − h2| = |h1 − h2|2.

for any h1, h2 ∈ H. Therefore,

d(h1 − T, h2 − T ) =

√√√√ 1

n

n∑

k=1

|h1(xk)− T (xk)|2 − |h2(xk)− T (xk)|2

≤

√√√√ 1

n

n∑

k=1

|h1(xk)− h2(xk)|2

= d(h1, h2),

from which N(F , d, ε) ≤ N(H, d, ε) can be easily established.

Theorem 7.16 Under the previous assumptions, we have

E
[
R(ĥ∗n)−R(h∗)

]
.
√
v(H)

n
,

where v(H) denotes the VC dimension of H.
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Proof: We have

E
[
R(ĥ∗n)−R(h∗)

]
. E

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

f(Xk)− E [f(X)]

∣∣∣∣∣

]

. EXEε

[
sup
f∈F

∣∣∣∣∣
1

n

n∑

k=1

εkf(Xk)

∣∣∣∣∣

]

. 1√
n
· EX

[∫ 1

0

√
logN(F , d, ε)dε

]

≤ 1√
n
· EX

[∫ 1

0

√
logN(H, d, ε)dε

]

.
√
v(H)

n
,

where the last line follows from Lemma 7.12.

Reading Materials

[1] Martin Wainwright, High-dimensional statistics – A non-asymptotic viewpoint, Chapter 4.

[2] Ramon van Handel, Probability in High Dimension, Chapters 5.2, 7.1, 7.2.

[3] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, Foundations of Machine Learn-
ing, Chapter 3.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 8: Random Matrices and Applications

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/05/05)

Motivation: The study of random matrices is directly motivated by the estimation of covariance
matrices. Let X ∈ Rn be a mean zero random vector. Then the covariance matrix corresponding
to X is given by

Σ = E
[
XXT

]
.

However, since we typically do not know the distribution of X but only have access to m i.i.d
samples {Xk}mk=1 of X, a natural estimator1 of Σ is

Σm =
1

m

m∑

k=1

XkX
T
k .

Then we would like to know how close the random matrix Σm to its mean Σ, particularly in terms
of the matrix spectral norm.

The approaches for studying the concentration of random matrices relies on the knowledge of
the distribution of the elements. For example, if the random matrix has sub-Gaussian entries, we
can establish the concentration results based on the concentration of random variables through the
variational expression for the matrix spectral norm. When there is no explicit distributions associ-
ated with the elements of the random matrix, the matrix concentration bound can be developed by
imitating the Chernoff method for random variables. That is, either we can use the concentration
inequalities for the random variables directly, or we can extend the proof techniques for the random
variable case to the random matrix case.

Before proceeding, it is worth noting that we will study matrix concentration in terms the spec-
tral norm rather than the Frobenius norm. This is largely due to that the deviation of principle
directions associated with the covariance matrix is typically of interest, and the bound based on
spectral norm is sufficiently tighter than that based on the Frobenius norm (which is the sum of
the errors in all directions). In addition, it is trivial that the matrix concentration bound in terms
of Frobenius norm can be reduced to concentration result of random variables.

Agenda:

• Covariance matrix under sub-Gaussian assumption

• Application: Clustering based on PCA

• Matrix Bernstein inequality

• Application: Covariance matrix for general distributions

• Application: Sparse Recovery
1When the covariance matrix is known to have certain structure, a better estimator can be constructed based on

that structure, see for example Chapter 6.5 of [1].
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8.1 Covariance Matrix under sub-Gaussian Assumption

In this section we will consider the concentration of the covariance matrix Σm when X is a sub-
Gaussian random vector, defined as follows.

Definition 8.1 (Sub-Gaussian random vector) A mean zero random vector X ∈ Rn is sub-
Gaussian with parameter σ2 if for each v ∈ Sn−1 (i.e., ‖v‖2 = 1), 〈X, v〉 is a sub-Gaussian random
variable with parameter σ2.

Example 8.2 Assume X ∈ Rn has i.i.d σ2-sub-Gaussian entries. Then,

E
[
eλ〈X,v〉

]
= E

[
n∏

k=1

eλvkXk

]
≤

n∏

k=1

e
λ2v2kσ

2

2 = e
λ2σ2

2 for v ∈ Sn−1,

meaning 〈X, v〉 is σ2-sub-Gaussian. Thus, X is a σ2-sub-Gaussian random vector.

Example 8.3 Let X ∼ N (0,Σ). Then for any v ∈ Sn−1, vTX ∼ N (0, vTΣv). Since vTΣv ≤ ‖Σ‖2,
we can conclude that X is a sub-Gaussian random vector with parameter at most ‖Σ‖2.

The following lemma provides a characterization of the spectral norm of a symmetric matrix in
terms of the ε-net. We have indeed seen this result for general matrices in Lecture 4.

Lemma 8.4 Let Z ∈ Rn×n be a symmetric matrix. Assume ε ∈ [0, 1/2) and let N be a ε-net of
Sn−1 under the ‖ · ‖2 metric. Then

‖Z‖2 ≤
1

1− 2ε
sup
v∈N
|〈Zv, v〉| .

Proof: For any x ∈ Sn−1, by the definition of ε-net, there exists a vector π(x) ∈ N such that
‖x− π(x)‖2 ≤ ε. It follows that

〈Zx, x〉 − 〈Zπ(x), π(x)〉 = 〈Z(x− π(x)), x〉+ 〈Zπ(x), x− π(x)〉 ,

and hence

|〈Zx, x〉 − 〈Zπ(x), π(x)〉| ≤ 2ε‖Z‖2.

Consequently,

‖Z‖2 = sup
x∈Sn−1

|〈Zx, x〉| ≤ sup
x∈Sn−1

(|〈Zπ(x), π(x)〉|+ 2ε‖Z‖2) .

Then the proof is complete after rearrangement.

Theorem 8.5 Let X ∈ Rn be a mean zero σ2-sub-Gaussian random vector and Σ = E
[
XXT

]
be

its covariance matrix. Let {Xk}mk=1 be i.i.d samples and define Σm = 1
m

∑m
k=1XkX

T
k . Then,

P
[‖Σm − Σ‖2

σ2
≥ c1

{√
n

m
+
n

m

}
+ t

]
≤ c2exp

(
−c3 min{t, t2}m

)
for all t ≥ 0.

Here, c1, c2, c3 > 0 are absolute numerical constants.
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Proof: Let Z = Σm − Σ. Taking N to be a 1/4-net of Sn−1, we have |N | ≤ 9n and

‖Z‖2 ≤ 2 sup
v∈N
|〈Zv, v〉| .

The overall strategy of the proof is to first consider a fixed v ∈ N and then take a union bound.
For any fixed v ∈ N , we have

〈Zv, v〉 =
1

m

m∑

k=1

((
XT
k v
)2 − E

[(
XT
k v
)2])

.

Since XT
k v is σ2-sub-Gaussian, we have

∥∥∥
(
XT
k v
)2 − E

[(
XT
k v
)2]∥∥∥

Lp
≤
∥∥∥
(
XT
k v
)2∥∥∥

Lp
+ E

[(
XT
k v
)2]

. σ2p,

implying that
(
XT
k v
)2−E

[(
XT
k v
)2]

is c4 ·σ4-sub-exponential. Thus the application of the Bernstein

inequality yields that

P
[
|〈Zv, v〉| ≥ δ

2

]
. exp

(
−c5 min

{
δ2

σ4
,
δ

σ2

}
m

)
.

Taking a union bound yields that

P [‖Z‖2 ≥ δ] ≤ P
[

sup
v∈N
|〈Zv, v〉| ≥ δ

2

]

. 9nexp

(
−c5 min

{
δ2

σ4
,
δ

σ2

}
m

)

= exp

(
n log 9− c5 min

{
δ2

σ4
,
δ

σ2

}
m

)
(8.1)

Let δ =
(
c1
{√

n
m + n

m

}
+ t
)
σ2. Then,

δ ≥
(
c1
n

m
+ t
)
σ2 and δ2 ≥

(
c21
n

m
+ t2

)
σ4.

Substituting them into (8.1) yields that

P [‖Z‖2 ≥ δ] . exp
(
n log 9− c5 min

{
c1
n

m
+ t, c21

n

m
+ t2

}
m
)
.

The proof is complete if we take c1 to be sufficiently large.

Remark 8.6 Given the tail bound, it is anticipated to obtain the moment bound, in particularly
on E [‖Σm − Σ‖2]. Since

E
[‖Σm − Σ‖2

σ2

]
=

∫ ∞

0
P
[‖Σm − Σ‖2

σ2
≥ x

]
dx
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=

∫ c1{√ n
m
+ n
m}

0
P
[‖Σm − Σ‖2

σ2
≥ x

]
dx+

∫ ∞

c1{√ n
m
+ n
m}

P
[‖Σm − Σ‖2

σ2
≥ x

]
dx

≤ c1
{√

n

m
+
n

m

}
+

∫ ∞

0
P
[‖Σm − Σ‖2

σ2
≥ c1

{√
n

m
+
n

m

}
+ t

]
dt

≤ c1
{√

n

m
+
n

m

}
+ c2

∫ ∞

0
exp

(
−c3 min{t, t2}m

)
dt

.
√
n

m
+
n

m
,

it follows that

E [‖Σm − Σ‖2] .
{√

n

m
+
n

m

}
σ2.

Moreover, we have

E [‖Σm‖2] . ‖Σ‖2 +

{√
n

m
+
n

m

}
σ2.

Thus, an upper bound for E [‖Σm‖2] can be derived from the concentration result under less stringent
conditions. Note this bound cannot be obtained via methods discussed in the previous lectures since
they only work for (sub)-Gaussian processes.

Figure 8.1: Σm = 1
mA

TA.

Remark 8.7 Assume Σ = In and Xk is sub-Gaussian with parameter σ2 = 1. Note that we can
express Σm as Σm = 1

mA
TA, where AT = [X1, · · · , Xm] (see Figure 8.3). Thus, Theorem 8.5

implies that, with high probability,

1− c′
√
n

m
≤ σmin(A)√

m
≤ σmax(A)√

m
≤ 1 + c′

√
n

m

for some numerical constant c′ > 0, with the proviso that m ≥ n. That is, A behaves more and
more well-conditioned (like an orthogonal matrix) when m/n increases. This turns out to be a
useful result itself.
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8.2 Application: Clustering Based on PCA

The PCA paradigm which first projects data onto a low dimensional subspace can be used for data
clustering. For simplicity we consider the following Gaussian mixture model with two different
means {−µ, µ},

X = εµ+ g, (8.2)

where ε ∈ {1,−1} is a Rademacher random variable, µ ∈ Rn is deterministic and g ∈ N (0, In).
In words, sampling from X will generate two clusters of data, obeying N (−µ, In) and N (µ, In)
respectively, see Figure 8.2.

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

Figure 8.2: A simulation of points generated according to the Gaussian mixture model (8.2).

Suppose we are given a sample of m points {Xk}mk=1 drawn according to the Gaussian mixture
model and want to identify which points belong to which cluster (i.e., determine they are generated
from which mean). From the simulation, it is not hard to see that the data generated from X is
stretch in the direction of µ, and the data points from different clusters have different inner product
with µ. Assuming ‖µ‖2 > 1, noting that

〈εµ+ g, µ〉 = ε‖µ‖22 + 〈g, µ〉 ,

where the size of 〈g, µ〉 is about ‖µ‖2, the sign of the inner product will coincide with ε, and hence
can tell which mean the data point corresponds to. Indeed, if we define

Zk = (sign(〈εkµ+ gk︸ ︷︷ ︸
Xk

, µ/‖µ‖2〉) 6= εk),

by the Hoeffding inequality, it can be shown that with high probability the number of misclassifi-
cations

∑m
k=1 Zk cannot exceed a fraction of m (show this!).
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In the situation when we do not know µ but only have access to {Xk}mk=1, we can approximate
µ by PCA since the principal direction of PCA captures the direction that the data points stretch
the most. This gives the spectral algorithm for data clustering (here “spectral” refers to using the
eigenvectors of a matrix for the task since the eigen-decomposition of a matrix is also known as
spectral decomposition),

• Compute the covariance matrix Σm = 1
m

∑m
k=1XkX

T
k .

• Compute the principal eigenvector q (of unit norm) of Σm, i.e., eigenvector corresponding to
the largest eigenvalue of Σm.

• Partition the data points into two clusters based on the sign of 〈Xk, q〉 (data points with the
same sign of 〈Xk, q〉 will be put into the same cluster).

Next we are going to show that q can be close to µ. To this end, we need the Davis-Kahan
theorem.

Theorem 8.8 (Davis-Kahan) Let S and T be two symmetric matrices with the same dimension.
Suppose the i-th largest eigenvalue of S is well separated from the rest of them:

min
j 6=i
|λj(S)− λi(S)| > δ.

Then the acute angle θi between the unit-norm eigenvectors µi(S) and µi(T ) corresponding to the
i-th largest eigenvalues satisfies

sin θi ≤
2‖S − T‖2

δ
.

In particular, there exists a θ ∈ {1,−1} such that ‖µi(S)− µi(T )‖2 ≤ 23/2‖S − T‖2/δ.

Note that

Σ = E
[
XXT

]
= µµT + In,

and the largest eigenvalue of Σ is 1 + ‖µ‖22, with the corresponding normalized eigenvector µ/‖µ‖2.
Since X is a sub-Gaussian random vector with the parameter proportional to ‖µ‖22 (check this!),
By Theorem 8.5, we have

‖Σm − Σ‖2 ≤ ρ‖µ‖22, (8.3)

for a sufficiently small ρ > 0 when m & n (the hidden constant relies on ρ). Noting the gap between
the first and second largest eigenvalues of Σ is ‖µ‖22, the Davis-Kahan theorem together with (8.3)
implies that

∃ θ ∈ {1,−1} such that ‖q − θ(µ/‖µ‖2)‖2 ≤ ρ′,

where ρ′ > 0 is also a sufficiently small number (a multiple of ρ).
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8.3 Matrix Bernstein Inequality

In the last section, we have studied the covariance matrix concentration based on the distributional
information of the matrix elements (e.g, certain sub-Gaussian rows). When there is no distribution
assumption to use, we may develop matrix concentration inequalities via the matrix Chernoff
method, which imitates the Chernoff method for random variables. Both the matrix Hoeffding
inequality and the matrix Bernstein inequality can be developed this way. In this section we focus
on the more widely used matrix Bernstein inequality.

8.3.1 Matrix Calculus

In this section we use Sn×n to denote the set of n× n symmetric matrices and use Sn×n+ to denote
the set of n× n symmetric and positive definite matrices. In addition, we say X � Y or Y � X if
Y −X is positive semidefinite.

Definition 8.9 (Matrix Function) Let X ∈ Sn×n with the eigenvalue decomposition X = QΛQT =∑n
k=1 λkqkq

T
k . Given a function f : R→ R, we define f(X) as

f(X) =
n∑

k=1

f(λk)qkq
T
k

In other words, we compute f(X) by applying f(·) to each eigenvalue of X while the eigenvectors
remain unchanged.

Example 8.10 Let f(x) = a0 + a1x+ · · ·+ ajx
j. Then,

f(X) = a0I + a1X + · · ·+ ajX
j .

Example 8.11 Let f(x) = ex. Then,

f(X) = eX = I +X +
X2

2!
+
X3

3!
+ · · · =

∞∑

k=0

Xk

k!
.

Example 8.12 Let f(x) = log x. Then, for X ∈ Sn×n+ ,

ef(X) = elogX = X.

Exercise 8.13 Let X and Y be two matrices in Sn×n.

1. Show that if the matrices commute (i.e., XY = Y X), then

eX+Y = eXeY .

2. Give an example of two matrices X and Y such that

eX+Y 6= eXeY .
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Note that the identity ex+y = exey plays a crucial role in the proof of the concentration of the
sum of random variables. Indeed, this identity allows us to tensorize, i.e., to break the moment
generating function of variable sum into the product of exponentials. Unfortunately, as we see in
the above exercise, similar identity does not hold for matrices in general. Nevertheless, there are
useful substitutes in terms of the matrix trace, which are stated below without proofs.

Lemma 8.14 (Golden-Thompson inequality) For two matrices X and Y in Sn×n, we have

trace
(
eX+Y

)
≤ trace

(
eXeY

)
.

Lemma 8.15 (Lieb inequality) Let H ∈ Sn×n. Define the function on the set Sn×n+ ,

f(X) = trace (exp (H + logX)) .

Then f(X) is a concave function on Sn×n+ .

Remark 8.16 The Jensen inequality still holds for random matrices since we can interpret f(X)
as a function of all the entries of X. Thus, letting X be a random matrix, we have

E [trace (exp (H + logX))] ≤ trace (exp (H + logE [X]))

Letting X = eZ , we have

E [trace (exp (H + Z))] ≤ trace
(
exp

(
H + logE

[
eZ
]))

. (8.4)

This inequality will be used in the proof of the matrix Bernstein inequality.

Both the Golden-Thompson inequality and the Lieb inequality can be used to establish the
matrix Bernstein inequality. We will use the Lieb inequality next as it tensorizes better and thus
yields better parameter dependence.

8.3.2 Matrix Bernstein Inequality

Theorem 8.17 (Matrix Bernstein inequality) Let X1, · · · , Xm be independent, mean zero, n×
n symmetric random matrices. Assume ‖Xk‖2 ≤ B almost surely for all k. Then, for any t ≥ 0,
we have

P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ t
]
≤ 2n · exp

(
− t2/2

σ2 +Bt/3

)
,

where σ2 =
∥∥∑m

k=1 E
[
X2
k

]∥∥
2
.

Note that the matrix Bernstein is an exact analogue of the Bernstein inequality for random variables.
Thus, the overall proof strategy is similar to that for the variable case. We start by establishing a
matrix MGF inequality.

Lemma 8.18 (Moment generating function of random matrix) Let X ∈ Sn×n be a mean
zero random matrix which satisfies ‖X‖2 ≤ B almost surely. Then,

E [exp (λX)] � exp
(
g(λ)E

[
X2
])

where g(λ) =
λ2/2

1−B|λ|/3
provided that |λ| < 3/B.
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Proof: First it can be shown that (check this!)

ez ≤ 1 + z +
1

1− |z|/3 ·
z2

2
if |z| < 3.

Thus, for |x| ≤ B, if |λ| < 3/B, then

eλx ≤ 1 + λx+ g(λ)x2.

It follows that

exp (λX) � I + λX + g(λ)X2,

provided ‖X‖2 ≤ B and |λ| < 3/B. Taking expectation on both sides yields that

E [exp (λX)] � I + g(λ)E
[
X2
]
� exp

(
g(λ)E

[
X2
])
,

as desired.

Proof: [Proof of Theorem 8.17] Noting that
∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

= max

{
λmax

(
m∑

k=1

Xk

)
, λmax

(
−

m∑

k=1

Xk

)}
,

it suffices to show that P [λmax (
∑m

k=1Xk) ≥ t] ≤ n·exp
(
− t2/2
σ2+Bt/3

)
, and the bound for P [λmax (−∑m

k=1Xk) ≥ t]
can be established in the same manner. To this end, for fixed λ ≥ 0 and the application of the
Markov inequality gives

P

[
λmax

(
m∑

k=1

Xk

)
≥ t
]

= P

[
exp

(
λ · λmax

(
m∑

k=1

Xk

))
≥ exp (λt)

]

≤ exp (−λt)E
[

exp

(
λ · λmax

(
m∑

k=1

Xk

))]

= exp (−λt)E
[
λmax

(
exp

(
λ ·

m∑

k=1

Xk

))]

≤ exp (−λt)E
[

trace

(
exp

(
λ ·

m∑

k=1

Xk

))]
. (8.5)

To apply the Lieb inequality (8.4), letting H = λ
∑m−1

k=1 Xk and Z = λXm, we have

E

[
trace

(
exp

(
λ ·

m∑

k=1

Xk

))]
≤ E

[
trace

(
exp

(
λ
m−1∑

k=1

Xk + logE
[
eλXm

]))]

Repeating this process yields that

E

[
trace

(
exp

(
λ ·

m∑

k=1

Xk

))]
≤ trace

(
exp

(
m∑

k=1

logE
[
eλXk

]))

9



≤ trace

(
exp

(
m∑

k=1

log exp
(
g(λ)E

[
X2
k

])
))

= trace

(
exp

(
g(λ)

m∑

k=1

E
[
X2
k

]
))

≤ n
∥∥∥∥∥exp

(
g(λ)

m∑

k=1

E
[
X2
k

]
)∥∥∥∥∥

2

= n · exp

(
g(λ)

∥∥∥∥∥
m∑

k=1

E
[
X2
k

]
∥∥∥∥∥
2

)

= n · exp
(
g(λ)σ2

)

provided |λ| ≤ 3/B, where in the second line we have used Lemma 8.18 for every E
[
eλXk

]
, the last

line follows from the definition of σ2. Plugging this bound into (8.5) gives

P

[
λmax

(
m∑

k=1

Xk

)
≥ t
]
≤ n · exp

(
−λt+ g(λ)σ2

)
.

Note that this bound holds for all 0 < λ < 3/B, and thus we can minimize the right side over this
interval. Indeed, the minimum is attained at λ = t/(σ2 +Bt/3), yielding

P

[
λmax

(
m∑

k=1

Xk

)
≥ t
]
≤ n · exp

(
− t2/2

σ2 +Bt/3

)
,

which is the desirable bound.
From the tail bound on ‖∑m

k=1Xk‖2, we can obtain a bound on the expectation.

Theorem 8.19 (Matrix Bernstein in expectation) Let X1, · · · , Xm be independent, mean zero,
n × n symmetric random matrices. Assume ‖Xk‖2 ≤ B almost surely for all k and let σ2 =∥∥∑m

k=1 E
[
X2
k

]∥∥
2
. Then,

E

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

]
. σ

√
log n+B log n.

Proof: By Theorem 8.17, it is not hard to show that (check this!) there exists an absolute
numerical constant c > 0 such that

P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ c
(
σ
√

log n+ u+B(log n+ u)
)]
≤ 2e−u.

Thus,

E

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

]
=

∫ ∞

0
P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ t
]
dt
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=

∫ c(σ
√
logn+B logn)

0
P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ t
]
dt+

∫ ∞

c(σ
√
logn+B logn)

P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ t
]
dt

≤ c
(
σ
√

log n+B log n
)

+

∫ ∞

0
P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ c
(
σ
√

log n+ u+B(log n+ u)
)]( cσ

2
√

log n+ u
+ cB

)
du

≤ c
(
σ
√

log n+B log n
)

+

(
cσ

2
√

log n
+ cB

)∫ ∞

0
P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ c
(
σ
√

log n+ u+B(log n+ u)
)]

du

≤ c
(
σ
√

log n+B log n
)

+

(
cσ√
log n

+ cB

)∫ ∞

0
e−udu

. σ
√

log n+B log n,

which completes the proof.
The matrix Bernstein inequality can be extended to non-symmetric and non-square matrices.

Theorem 8.20 (Matrix Bernstein inequality for rectangular matrices) Let X1, · · · , Xm be
independent, mean zero, n1 × n2 matrices. Assume ‖Xk‖2 ≤ B almost surely for all k. Then, for
any t ≥ 0, we have

P

[∥∥∥∥∥
m∑

k=1

Xk

∥∥∥∥∥
2

≥ t
]
≤ 2(n1 + n2) exp

(
− t2/2

σ2 +Bt/3

)
,

where

σ2 = max

(∥∥∥∥∥
m∑

k=1

E
[
XkX

T
k

]
∥∥∥∥∥
2

,

∥∥∥∥∥
m∑

k=1

E
[
XT
k Xk

]
∥∥∥∥∥
2

)
.

Proof: Apply Theorem 8.17 to the sum of

[
0 XT

k

Xk 0

]
.

8.4 Application: Covariance Matrix for General Distributions

In the first section we have considered the covariance matrix problem when the random vector is
sub-Gaussian. In this section we remove the sub-gaussian requirement and consider the case when
the random vector has bounded `2-norm. In this situation, the Bernstein inequality will yield better
result than simply using Theorem 8.5 with a crude estimation of the sub-Gaussian parameter based
on the `2-norm of the random vector.

Theorem 8.21 Let X1, · · · , Xm ∈ Rn be i.i.d zero mean random vectors with covariance Σ =
E
[
XkX

T
k

]
. Assume ‖Xk‖2 ≤

√
b almost surely. Then for any t > 0, the sample covariance matrix

Σm = 1
m

∑m
k=1XkX

T
k satisfies

P [‖Σm − Σ‖2 ≥ t] ≤ 2n · exp

(
− mt2/2

b‖Σ‖2 + 2bt/3

)
.
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In addition, we have

E [‖Σm − Σ‖2] .
√
b‖Σ‖2 log n

m
+
b log n

m
.

Proof: First note that if ‖Xk‖2 ≤
√
b, there holds (check this!)

‖Σ‖2 =
∥∥E
[
XkX

T
k

]∥∥
2
≤ b.

Letting Zk = 1
m

(
XkX

T
k − Σ

)
, it follows that

‖Zk‖2 ≤
1

m

∥∥XkX
T
k

∥∥
2

+
1

m
‖Σ‖2 ≤

2b

m
.

Moreover, we have

E
[
Z2
k

]
=

1

m2

(
E
[
(XkX

T
k )2
]
− Σ2

)
� 1

m2
E
[
‖Xk‖22XkX

T
k

]
� b

m2
Σ.

It follows that,

σ2 =

∥∥∥∥∥
m∑

k=1

E
[
Z2
k

]
∥∥∥∥∥
2

≤ b‖Σ‖2
m

.

Thus, applying Theorems 8.17 and 8.19 concludes the proof.

Example 8.22 Let Xk =
√
nekj , where ekj is the kj-th canonical vector in Rn with kj being

sampled uniformly at random from {1, · · · , n}. Then

E
[
XkX

T
k

]
=

n∑

j=1

eje
T
j = In and ‖Xk‖2 ≤

√
n.

Thus, by Theorem 8.21, we have

E [‖Σm − In‖2] .
√
n log n

m
+
n log n

m
.

8.5 Application: Sparse Recovery

Consider the following underdetermined linear system (see Figure 8.3 for a pictorial illustration):

y = Ax∗ + w, (8.6)

where A ∈ Rm×n is a fat matrix with m < n, y denotes the observation, x∗ denotes the parameter
to be estimated or signal to be reconstructed, and w denotes the measurement noise. The goal is
to infer or reconstruct x∗ from the observation y.

The linear model (8.6) arises in many statistical and signal processing applications. In statistics,
(8.6) models the regime where the number of responses is fewer than the number of predictors (or
covariates). In signal processing, it describes the problem where the number of measurements
is smaller than size of the signal. Since the number of unknowns is larger than the number of
equations, (8.6) does not admit a unique solution, in contrast to the classical least squares problem.
Therefore, additional structures on the unknown vector x∗ is needed to reduce the feasible space.
In this section we will focus on the sparse solution, namely x∗ only has a few nonzero entries.
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Figure 8.3: A pictorial illustration of (8.6).
.

Definition 8.23 (Sparse vector) A vector x ∈ Rn is said to s-sparse if the number of nonzero
entries in x is less than or equal to s. In other words, if we define

‖x‖0 = # {k ∈ {1, · · · , n} : xk 6= 0}

which counts the number of nonzero entries in x, then x is s-sparse if ‖x‖0 ≤ s.
In this lecture we will refer ‖ · ‖0 as the `0-norm though it is technically not a norm. The notion

of sparsity plays an important role in modern statistics, signal processing and machine learning,
which characterizes a special type of low dimensional structure.

• In statistics, especially in the context of variable selection, it means only a number of covari-
ates play an important role (a typical example is genome expression).

• In signal processing or machine learning, it means the signal of interest has the sparse structure
itself or under certain linear transform.

A basic question to answer is how and when one can reconstruct the sparse vector x∗ when there
are fewer observations. There have been many methods for sparse parameter estimation or
sparse signal reconstruction, including both the convex and nonconvex methods. In this lecture,
we study the most widely studied methods based on the `1-norm. For simplicity, we only consider
the noiseless case (i.e., w = 0). The noisy case can discussed in an overall similar way, see the
references for details.

8.5.1 Exact Recovery in the Noiseless Setting

Since we know x∗ is a sparse signal it is natural to reconstruct it by seeking the sparsest vector which
is consistent with the measurement, namely by solving the following `0-minimization problem:

min
x∈Rn

‖x‖0 subject to Ax = y. (8.7)

However, the `0 minimization problem is nonconvex and computationally intractable due to the
combinatorial nature of `0-norm. In optimization, convex relaxation is a widely used technique
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to handle nonconvex problems. Here, the nearest convex relaxation of the `0-norm is the `1-norm
which sums up the magnitudes of all the entries of a vector (i.e., ‖x‖1 =

∑n
k=1 |xk|). Replacing the

`0-norm with the `1-norm in the objective leads to the following `1-minimization,

min
x∈Rn

‖x‖1 subject to Ax = y. (8.8)

The `1-minimization problem is also known as basis pursuit in the literature. It is a convex problem
which can be rewritten as a linear programming. It can be solved by the first order or the second
order methods. Indeed, the `1-minimization problem has spurred the significant development of
the first order methods in optimization.

A central question in this section is when the `1-minimization is able to recover the target sparse
solution x∗. To understand why the `1-minimization returns a sparse solution we first present the
intuition and then give a rigorous analysis. Noting that (8.8) is trivially equivalent to

min
t∈R

t subject to ‖x‖1 = t and Ax = y.

That is, the solution to (8.8) can be found by gradually enlarge the `1-ball until the ball intersect
with the solution set, see Figure 8.4. Since the `1-ball is pointy at its vertices (or the extreme sets
in high dimension), the vertices will first touch the solution set. Noting the vertices have fewer
nonzero entries, the `1-minimization tends to return a sparse solution.

Figure 8.4: A pictorial illustration of `1-minimization.
.

There are several different conditions which have been developed for the guarantee analysis of
the `1-minimization. In this lecture we will adopt the restricted isometry property proposed by
Candes and Tao [2005].

Definition 8.24 (Restricted Isometry Property (RIP)) Given an integer s ∈ {1, · · · , n}, we
say the matrix A ∈ Rm×n (m < n) satisfies the restricted isometry property with the constant δs if

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 (8.9)

holds for all s-sparse vectors x such that ‖x‖0 ≤ s.

The restricted isometry property basically means that every s columns of A, denoted AS with
|S| = s, form a nearly orthogonal matrix when δs is small since it can be easily seen that (8.9) is
equivalent to

‖ASATS − Is‖2 ≤ δs (8.10)
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for any subset S of cardinality at most s, where AS denotes the sub-matrix formed by the columns
of A in S.

We are now in position to present a rigorous analysis about when the `1 minimization is able to
exactly reconstruct the target solution x∗ based on the restricted isometry property of the matrix.

Theorem 8.25 (Exact recovery) Let y = Ax∗, where x∗ is a s-sparse vector (i.e., ‖x∗‖0 ≤ s).
If the RIP constant of A of order 3s satisfies δ3s < 1/3, then the solution to (8.8) is x∗. That is,
the `1 minimization is able to exactly recovery the sparse vector x∗.

A careful reader may wonder when a matrix A satisfies the condition δ3s < 1/3. As can be
seen in the last section, certain random matrix satisfies this condition with high probability when
m & s log n.

Proof: [Proof of Theorem 8.25] Let S denote the support of x∗ and Sc denote the complement of
S in {1, · · · , n}. We first show that for any x = x∗+h ∈ Rn, if ‖x‖1 ≤ ‖x∗‖1, then there must hold

‖hSc‖1 ≤ ‖hS‖1. (8.11)

This follows from

‖x∗‖1 ≥ ‖x‖1 = ‖x∗ + h‖1 = ‖x∗S + hS‖1 + ‖hSc‖1 ≥ ‖x∗S‖1︸ ︷︷ ︸
=‖x∗‖1

−‖hS‖1 + ‖hSc‖1.

Thus it suffices to show the following nullspace property2: for any h in the nullspace of A (i.e.,
Ah = 0), if h satisfies (8.11), then we must have h = 0.

Next we are going to show that if δ3s < 1/3, the nullspace property holds. To this end, let
S0 = S be the support of x∗, let S1 be the first 2s largest entries (in magnitude) of hSc , let S2 be
the second 2s largest entries (in magnitude) of hSc ,and so on. Let hSj ∈ Rn be the vector such
hSj (i) = h(i) when i ∈ Sj and h(Sj)(i) = 0. With a slight abuse of notion, we also use hSj to
denote the vector segment supported on Sj . Noting that

0 = Ah = AhS0∪S1 +
∑

j≥2
AhSj ,

we have

0 ≥ ‖AhS0∪S1‖2 − ‖
∑

j≥2
AhSj‖2

≥ ‖AhS0∪S1‖2 −
∑

j≥2
‖AhSj‖2

≥
√

1− δ3s‖hS0∪S1‖2 −
√

1 + δ3s
∑

j≥2
‖hSj‖2. (8.12)

2The nullspace property for sparse recovery which basically means that the nullspace of A does not insects with
the descent direction of the `1-norm at x∗. It is actually both sufficient and necessary for exact recovery of basis
pursuit, see for example [1]. Theorem 8.25 gives a sufficient condition for this property to hold in terms of the RIP
constant.
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Moreover, a simple calculation yields that
∑

j≥2
‖hSj‖2 ≤

∑

j≥2

√
2s‖hSj‖∞

≤
∑

j≥2

‖hSj−1‖1√
2s

≤ 1√
2s
‖hSc‖1

≤ 1√
2s
‖hS‖1

≤ 1√
2
‖hS‖2

≤ 1√
2
‖hS0∪S1‖2, (8.13)

where the fourth line follows from (8.11). Inserting this inequality into (8.12) gives

(√
1− δ3s −

√
1 + δ3s√

2

)
‖hS0∪S1‖2 ≤ 0.

Since
√

1− δ3s−
√
1+δ3s√

2
> 0 due to the assumption δ3s < 1/3, ‖hS0∪S1‖2 = 0 and thus ‖h‖2 = 0.

8.5.2 Random Matrices Satisfying RIP

Theorem 8.26 Let A be an m×n matrix whose rows Ai are independent, isotropic (i.e., E
[
ATi Ai

]
=

In), sub-Gaussian vectors with parameter σ2 = 1. Then, if

m & δ−2s log n,

the matrix A/
√
m satisfies the RIP with a small constant 0 < δ < 1 with probability at least

1− c2 · exp
(
−c4δ2m

)
, where c2 and c4 are numerical constants.

Proof: Recall that, by (8.10), it is enough to show
∥∥∥∥

1

m
ATSAS − Is

∥∥∥∥
2

≤ δ

for all subsets S of cardinality s, where AS denotes the sub-matrix constructed from the columns
of A in S.

For a fixed subset S, first note that Ai(S) is also σ2-sub-Gaussian (why?) and it also satisfies
E
[
Ai(S)TAi(S)

]
= Is. Thus, the application of Theorem 8.5 implies that

P
[∥∥∥∥

1

m
ATSAS − Is

∥∥∥∥
2

≥ c1
√

s

m
+ t

]
≤ c2exp

(
−c3 min{t, t2}m

)
,

provided m ≥ s. Let t = δ
2 . If m & c · δ−2s log n for a sufficiently large constant c > 0, then

∥∥∥∥
1

m
ATSAS − Is

∥∥∥∥
2

≤ c1
√

s

m
+
δ

2
≤ δ
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for all subsets S of cardinality s with probability at least

1−
(
n

s

)
· c2exp

(
−c3δ2m

)
≥ 1− c2 · exp

(
s log n− c3δ2m

)
≥ 1− c2 · exp

(
−c4δ2m

)
,

which completes the proof.

Reading Materials

[1] Martin Wainwright, High Dimensional Statistics – A non-asymptotic viewpoint, Chapters 6.2,
6.3, 6.4, 7.1, 7.2, 7.3.

[2] Roman Vershynin, High-Dimensional Probability: An introduction with applications in data
science, Chapters 4.6, 4.7, 5.4, 5.6, 10.5, 10.6.
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High Dimensional Probability and Statistics 2nd Semester, 2023-2024

Lecture 9: Minimax Lower Bounds

Instructor: Ke Wei Scribe: Ke Wei (Updated: 2024/05/19)

Motivation: Consider a set of probability distributions define on X and indexed by Θ, denoted P =
{Pθ, θ ∈ Θ}. For example, θ can denote certain parameter of a distribution or the corresponding
probability density function. Given a set of i.i.d data (X1, · · · , Xn) sampled from Pθ where θ is not
known a prior, a fundamental statistical problem is to estimate θ from D.

Let θ̂ : (X1, · · · , Xn) → Θ be an estimation procedure. The concentration inequalities and
other probability tools presented earlier can help establish an upper bound of the estimation error
in terms of1

Φ
(
ρ
(
θ̂, θ
))
,

where ρ(·, ·) is a (semi)metric defined on Θ and Φ : [0,∞) → [0,∞) is an increasing function. As
an example, for a univariate mean estimation problem, ρ(θ, θ′) = |θ − θ′| and Φ(t) = t2 yields the
squared error. On the other hand, it is worth investigating whether the estimation error of θ̂ is
optimal. To this end, we study the lower bound of the estimation error based on the minimax risk,
defined by

Mn(Θ) = inf
θ̂

sup
θ∈Θ

Eθ
[
Φ
(
ρ
(
θ̂, θ
))]

, (9.1)

where the subscript θ means that X1, · · · , Xn are sampled from Pθ. That is, for a fixed estimation
procedure we consider the worst case error by taking the supremum over all the distributions, and
then study the smallest worst case error achievable by any procedure.

There are two methods for obtaining the minimax lower bound: Bayesian analysis and reduction
to hypothesis testing. We will focus on the latter one since it is more versatile and can be applied
to most situations. To gain some intuition of the hypothesis testing method,consider the minimax
risk of estimating a scalar parameter in terms of the risk function |θ − θ′|. Suppose there are two
point θ1 and θ2 such that |θ1 − θ2| ≥ δ. If the probability of testing error is a constant no matter
what method we use to test which point the observed data comes from, then the estimation error for
any procedure should be greater than a multiple of δ since with constant probability we are likely to
mistaken one from the other. Of course we can also consider the problem of testing multiple points.
Thus, overall the problem is about how to choose the testing points such that they are as far away
as possible while the probability of testing error for any testing method remains a constant.

In this lecture we discuss two standard techniques for establishing the lower bounds of the min-
imax risks based on testing, including the Le Cam and Fano methods. Roughly speaking, Le Cam
method is based on binary testing and Fano methods are based on multiway hypothesis testing.
There is another method which is not covered in this lecture, known as Assouad method, for lower
bounding the minimax risk. Assouad method is based on the multiple binary hypothesis testing
when the risk function is separable, see for example Chapter 8 and 9 of [2].

Agenda:

1We use θ̂ to denote θ̂(X1, · · · , Xn) for simplicity.
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• Reduction to hypothesis testing

• Some divergence measures

• Le Cam method

• Fano methods

9.1 Reduction to Hypothesis Testing

Let {θ1, · · · , θm} be a 2δ-packing of the space Θ under the (semi)metric ρ, i.e., ρ(θi, θj) ≥ 2δ for
all i ≥ j. Define Pnj = Pθj × · · · × Pθj . First, by the Markov inequality we have

Eθj
[
Φ
(
ρ(θ̂, θj)

)]
≥ Φ(δ) · Pnj

[
Φ
(
ρ(θ̂, θj)

)
≥ Φ(δ)

]
≥ Φ(δ) · Pnj

[
ρ(θ̂, θj) ≥ δ

]
,

where we note that θ̂ = θ̂(X1, · · · , Xn), and Pnj indicates that (X1, · · · , Xn) are sampled from Pθj .
In addition, the second inequality is due to the fact that Φ is increasing. It follows that

sup
θ∈Θ

Eθ
[
Φ
(
ρ
(
θ̂, θ
))]
≥ max

θj
Eθj

[
Φ
(
ρ(θ̂, θj)

)]
≥ Φ(δ)


 1

m

m∑

j=1

Pnj
[
ρ(θ̂, θj) ≥ δ

]

 .

Next we will show 1
m

∑m
j=1 Pnj

[
ρ(θ̂, θ) ≥ δ

]
can be lower bounded by hypothesis testing error.

In the hypothesis testing, a test function is a map from a set of i.i.d data sampled from one
of {Pθj , j = 1, · · · ,m} to {1, · · · ,m}, which is used to infer from which probability distribution

the data comes from. Given an estimation procedure θ̂, we can define a test function naturally as
follows:

Ψ̂(X1, · · · , Xn) = arg min
`∈[m]

ρ(θ̂(X1, · · · , Xn), θ`),

where the tier is broken arbitrarily. Since {θ1, · · · , θm} is a 2δ-packing of Θ, it is clear that (see
Figure 9.1)

ρ(θ̂, θj) < δ ⇒ Ψ̂ = j.

Thus, when (X1, · · · , Xn) are sampled from Pθj , we have2

Pnj
[
Ψ̂ 6= j

]
≤ Pnj

[
ρ(θ̂, θj) ≥ δ

]
.

Consequently,

1

m

m∑

j=1

Pnj
[
ρ(θ̂, θj) ≥ δ

]
≥ 1

m

m∑

j=1

Pnj
[
Ψ̂ 6= j

]
.

2We also use Ψ̂ to denote Ψ̂(X1, · · · , Xn) for simplicity.
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Moreover, we have

sup
θ∈Θ

Eθ
[
Φ
(
ρ
(
θ̂, θj

))]
≥ Φ(δ)


 1

m

m∑

j=1

Pnj
[
Ψ̂ 6= j

]

 .

Taking the infimum over all estimation procedures θ̂ on the lefthand side and the infimum over all
test functions yields the following proposition.

Proposition 9.1 Under the setup of the above test problem, the minimax risk (9.1) is lower
bounded as

Mn(Θ) ≥ Φ(δ) inf
Ψ


 1

m

m∑

j=1

Pnj [Ψ(X1, · · · , Xn) 6= j]


 , (9.2)

where the infimum ranges over all test functions. Note that δ is parameter that is free to choose
and it denotes the minimum distance between θi and θj for all i 6= j.

Figure 9.1: An illustration of 2δ-packing.

Consider a joint distribution (J, ZJ), where J is uniform distributed in {1, · · · ,m} and given
J = j, Zj = (X1, · · · , Xn) obeys the distribution of Pnj . It is clear that the joint distribution obeys

Q
[
ZJ ∈ ·, J = j

]
=

1

m
Pnj
[
Zj ∈ ·

]
,

and the marginal distributions are given by

QJ [J = j] =
1

m
and QZ

[
ZJ ∈ ·

]
=

1

m

m∑

j=1

Pnj
[
Zj ∈ ·

]
.

Moreover, for any test function Ψ, we have

Q
[
Ψ(ZJ) 6= J

]
=

m∑

j=1

Q
[
Ψ(ZJ) 6= J, J = j

]
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=

m∑

j=1

Q
[
Ψ(ZJ) 6= j, J = j

]

=
1

m

m∑

j=1

Pnj (Ψ(Zj) 6= j).

Therefore, we can rewrite (9.2) as

Mn(Θ) ≥ Φ(δ) inf
Ψ

Q
[
Ψ(ZJ) 6= J

]
, (9.3)

which will be used in the sequel for conciseness.

Remark 9.2 In words, reduction to hypothesis testing lower bounds the best achievable estimation
error by a multiple of the failing probability of test. It is not hard to imagine that the smallest
mis-test probability fundamentally relies on how close Pnj are, which enables us to provides a bound
independent of the test function. Moreover, the lower bound in (9.2) or (9.3) is a function of the
separation δ, which trades off between Φ(δ) (increases as δ increases) and the probability of test
error infΨ Q

[
Ψ(ZJ) 6= J

]
(relying on δ implicitly, decreases as δ increases). In order to obtain

a desirably large lower bound, one usually chooses the largest3 δ such that infΨ Q
[
Ψ(ZJ) 6= J

]

is greater than a constant4 (for example 1/2) and then uses the corresponding Φ(δ) to provide
lower bound. As we have explained in the motivation part, the intuition is that if the parameters
are far away (i.e, by choosing the largest possible δ) but it is still difficult to distinguish the related
distributions from the observations (i.e., probability of testing error is constant), then the estimation
error must be lower bounded by related function of the parameter distance since we can mistaken
one for the other. Next, we will present two concrete methods: the Le Cam and Fano methods.

9.2 Some Divergence Measures

We first take a detour and present some inequalities for divergence measures and their consequences
for product distributions. Let P and Q be two probability distributions defined on X . Assume they
have densities p(x) and q(x) respectively with respect to some underlying base measure µ. The
three related divergences are

• KL divergence: D(Q‖P) =
∫
X q(x) log q(x)

p(x)µ(dx),

• TV distance: ‖P−Q‖TV = supA⊂X |P(A)−Q(A)| = 1
2

∫
X |p(x)− q(x)|µ(dx),

• Hellinger distance: H2(P‖Q) =
∫
X

(√
p(x)−

√
q(x)

)2
µ(dx).

Recall that KL divergence and TV distance have also been mentioned in Lecture 3. The three
divergence measures are related as follows.

Lemma 9.3 For two distributions P and Q, we have

1. ‖P−Q‖TV ≤
√

1
2D(Q‖P),

3As can be seen δ may rely on other parameters, such as the number of samples.
4That is, choose the largest possible δ that the testing problem is still sufficiently challenging.
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2. ‖P−Q‖TV ≤ H(P‖Q)

√
1− H2(P‖Q)

4 .

Proof: The proof for the first inequality can be found in Lecture 3. The second inequality can
be proved by the Cauchy-Schwarz inequality (check this!).

Recall that Pn (respectively, Qn) is the product distribution on the product space X n (i.e., the
distribution of n i.i.d random variables). It is desirable to express the distance between Pn and Qn

in terms of P and Q. For TV distance, it is difficult to express ‖Pn−Qn‖TV in terms of ‖P−Q‖TV.
For KL divergence and the Hellinger distance we have the following lemma.

Lemma 9.4 For two distributions P and Q and the corresponding , we have

1. D(Qn‖Pn) = nD(Q‖P),

2. H2(Pn‖Qn) ≤ nH2(P‖Q).

Proof: The first inequality can be proved directly using the fact that the density functions for
Pn and Qn are p(x1) · · · p(xn) and q(x1) · · · q(xn) respectively. Additionally, it can be shown that
(check this!)

1

2
H2(Pn‖Qn) = 1−

(
1− 1

2
H2(P‖Q)

)n
.

Then the second inequality follows immediately since (1− x)n ≥ 1− nx for x ∈ [0, 1].

9.3 Le Cam Method

Le Cam method provides lower bounds on the minimax using the simple binary hypothesis testing.
This section explores this connection based on the total variation distance.

Lemma 9.5 In the case of binary hypothesis testing, we have

inf
Ψ

Q
[
Ψ(ZJ) 6= J

]
=

1

2
(1− ‖Pn1 − Pn2‖TV) ,

where Pn1 and Pn2 are product distributions corresponding to θ1 and θ2, respectively.

Proof: For any test function Ψ defined on X n, let

A = {(x1, · · · , xn) ∈ X n : Ψ(x1, · · · , xn) = 1}.

and Ac be the complementary on which Ψ = 2. Then we have

sup
Ψ

Q
[
Ψ(ZJ) = J

]
= sup

A

1

2
(Pn1 [A] + Pn2 [Ac])

=
1

2
+

1

2
sup
A

(Pn1 [A]− Pn2 [A])

=
1

2
+

1

2
‖Pn1 − Pn2‖TV.

Noting that supΨ Q
[
Ψ(ZJ) = J

]
= 1− infΨ Q

[
Ψ(ZJ) 6= J

]
, the claim follows immediately.

Combining the above lemma and Proposition 9.1 together yields the following minimax risk bound.
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Proposition 9.6 We have

Mn(Θ) ≥ Φ(δ)

2
(1− ‖Pn1 − Pn2‖TV)

for any pair of distributions θ1 and θ2 satisfying ρ(θ1, θ2) ≥ 2δ.

Note that as δ decreases ‖Pn1−Pn2‖TV decreases, and the binary hypothesis testing problem becomes
more challenging. In practice, we roughly attempt to choose the largest possible δ such that
‖Pn1 − Pn2‖TV is a small constant so that we can still mistaken the θ1 and θ2 (yielding the lower
bound of the estimation error depending on δ) .

Example 9.7 Let P = {Pθ : θ ∈ R} be a family of normal distributions N (θ, σ2) with fixed
variance σ2. We study the minimax risk of estimating θ from i.i.d samples {Xk}nk=1 drawn from
Pθ. We consider two parameters θ1 = 0 and θ2 = θ satisfying θ = 2δ. In order to apply the Le
Cam method, we need to bound ‖Pnθ − Pn0‖TV. Given two probability distributions P and Q defined
over X , respectively with their probability densities p(x) and q(x) under some base measure µ, it
can be easily shown that (check this!)

‖P−Q‖2TV ≤
1

4

(∫

X

p2(x)

q(x)
µ(dx)− 1

)
.

Using this result for Pn0 and Pnθ on X = Rn yields that

‖Pnθ − Pn0‖2TV ≤
1

4

(
exp

(
nθ2/σ2

)
− 1
)

=
1

4

(
exp

(
4nδ2/σ2

)
− 1
)
.

Taking δ = 1
2
σ√
n

yields that

inf
θ̂

sup
θ∈R

Eθ
[
|θ̂ − θ|2

]
≥ δ2

2

(
1−
√
e− 1/2

)
≥ δ2

6
=

1

24

σ2

n
.

The scale σ2/n is sharp, and the sample mean θ̂ = 1
n

∑n
k=1Xk satisfies this bound (check this!).

9.4 Fano Methods

The Fano methods provide lower bounds based on the multiway hypothesis testing and the Fano
inequality in information theory.

9.4.1 Information Theory Basics

Information theory is essentially about studying the information or randomness stored in probability
distributions. Here we provide some basic materials in information theory that is needed for lower
bounding the minimax risk. More details about information can be found in the book Elements of
Information Theory. The fundamental notion in information theory is Shannon entropy.
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Definition 9.8 (Shannon entropy) Let X ∼ Q where Q is a probability distribution on X with
density q(x) with respect to some base measure µ. The Shannon entropy of5 X is

H(X) = −
∫

X
q(x) log q(x)µ(dx). (9.4)

When X is a discrete random variable, we can take X as a finite set and take µ as a counting
measure on X . In this case, the definition (9.4) reduces to the discrete entropy6

H(X) = −
∑

x∈X
q(x) log q(x). (9.5)

To motivate the definition of entropy, consider the random variable/the distribution

X =





a with probability 1
2

b with probability 1
4

c with probability 1
8

d with probability 1
8 .

Let (X1, · · · , XN ) be i.i.d samples of X, e.g.,

a, a, b, c, a, d, a, b...

In the coding problem, we need to assign {a, b, c, d} with binary numbers such that the binary
number sequences corresponding to (X1, · · · , XN ) can be decoded to recover (X1, · · · , XN ). For
example, we can set

a = 00, b = 01, c = 10, d = 11.

Then for any 0-1 sequence, we can uniquely decode the symbols. For this coding scheme, the
total length of the codes is 2N ; that is on average 2 digits for each sample. A natural question
is whether there are other more efficient coding scheme that has a smaller length but can also
guarantee successful decoding. It is obvious that the above coding scheme does not consider the
frequency each symbol occurs. Intuitively, symbols with low frequency should be encoded with
short codes and vice versa. A more efficient coding scheme is presented in Figure 9.2, with the
total length of the codes for the sampled sequence is (in expectation) N ·H(X). Actually, it can
be shown that this is the best one can do.

Overall, the entropy H(X) measures on average how many bits are needed to represent a distri-
bution. Roughly speaking, to represent the probability for X = x (i.e., q(x)), we need log 1/(q(x))
bits since it corresponds to 1/q(x) possibilities. Thus, on average we need H(x) bits to store the
distribution of X. The entropy reflects the uncertainty (amount of information) of a distribution,
and distributions with high uncertainty have high entropy (large amount of information)7.

Lemma 9.9 For discrete entropy, we have 0 ≤ H(X) ≤ log |X |.
5Shannon entropy is actually a function of probability distributions since there are many different random variables

obeying the same distribution. That is, it is a quantity that summaries the information of a distribution. Despite
this, we just follow the standard practice in information theory and treat it as a function of random variables.

6Note that, for continuous random variables, the Shannon entropy is often referred to as the differential entropy.
7Amount of information = possibilities, quantified by codes length.
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Figure 9.2: A coding scheme.

It is worth noting that for differential entropy (i.e., entropy of continuous random variables),
H(X) ≥ 0 is not always true since q(x) can be greater than 1 (for example consider a uniform
distribution over a small interval). The upper bound log |X | is achieved by the uniform distribu-
tion on X , i.e., Q(X = x) = 1

|X | .

Proof: The lower bound H(X) ≥ 0 follows from q(x) ≤ 1 and the upper bound follows from
Jensen inequality.

We can also define the conditional entropy, which is the amount of information left in a random
variable after observing another.

Definition 9.10 (Conditional entropy) Given a pair of random variables(X,Y ) on (X ,Y) with
joint distribution QX,Y , the conditional entropy of X|Y is defined as

H(X|Y ) = EY
[
−
∫

X
q(x|Y ) log q(x|Y )µ(dx)

]
.

In addition, given two random variables, we can define the mutual information between them.

Definition 9.11 (Mutual information) Given a pair of random variables(X,Y ) on (X ,Y) with
joint distribution QX,Y , let QX and QY denote the respect marginal distributions. The mutual
information of X and Y is defined as

I(X,Y ) = D(QX,Y ‖QXQY ).

We first note that I(X,Y ) ≥ 0, and I(X,Y ) = 0 if and only if X and Y are independent. Thus,
it can be thought as a way to measure the amount of dependence between X and Y . When X and
Y are independent, I(X;Y ) = 0.

We have the following properties about entropy, conditional entropy and mutual information.

Lemma 9.12 We have

1. H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ),

2. H(X,Y |Z) = H(X|Z) +H(Y |X,Z) = H(Y |Z) +H(X|Y,Z),

3. I(X,Y ) = H(X) +H(Y )−H(X,Y )
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4. I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),

5. H(X|Y ) ≤ H(X), H(Y |X) ≤ H(Y ),

6. H(Y |X) = 0 if Y = f(X), i.e., when Y is a function of X.

Proof: Whenever it is possible, we will assume the existence of the (conditional) density functions
in the proofs for conciseness.

The first two identities are known as the chain rule for entropy. We only prove the first equality
in 1 and 2 since the other two can be proved similarly. Noting that q(y|x) = q(x,y)

q(x) , we have

H(Y |X) = −
∫

X

(∫

Y
q(y|x) log q(y|x)µ(dy)

)
q(x)µ(dx)

= −
∫

X

(∫

Y

q(x, y)

q(x)
log

q(x, y)

q(x)
µ(dy)

)
q(x)µ(dx)

= H(X,Y )−H(X).

Similarly, noting that q(y|x, z) = q(x,y,z)
q(x,z) = q(x,y|z)q(z)

q(x,z) = q(x,y|z)
q(x|z) and q(x, z) = q(x|z)q(z), we have

H(Y |X,Z) = −
∫

X

∫

Z

(∫

Y

q(x, y|z)
q(x|z) log

q(x, y|z)
q(x|z) µ(dy)

)
q(x|z)q(z)µ(dx)µ(dz)

= −
∫

X

∫

Z

(∫

Y
q(x, y|z) log q(x, y|z)µ(dy)

)
q(z)µ(dx)µ(dz)

+

∫

X

∫

Z

(∫

Y
q(x, y|z) log q(x|z)µ(dy)

)
q(z)µ(dx)µ(dz)

= −
∫

X

∫

Z

(∫

Y
q(x, y|z) log q(x, y|z)µ(dy)

)
q(z)µ(dx)µ(dz)

+

∫

Z

(∫

X

(∫

Y
q(x, y|z)µ(dy)

)
log q(x|z)µ(dx)

)
q(z)µ(dz)

= H(X,Y |Z)−H(X|Z).

Expanding the expression for I(X,Y ),

I(X,Y ) =

∫

Y

∫

X
q(x, y) log

q(x, y)

q(x)q(y)
µ(dx)µ(dy),

yields 3 straightforwardly.
Combining 1 and 2 together yields 4, and 5 follows from 4 directly. Note that 5 means the

conditional entropy is always less than or equal to the entropy. That is, considering the entropy
under certain condition only decreases the uncertainty of a random variable. Moreover, if X and
Y are independent, then H(X|Y ) = H(X), so in this situation observing Y will not reduce the
uncertainty in X.

When Y = f(X), Y |(X = x) is deterministic or it is a discrete random variable only taking one
value at f(x). Evidently, we have H(Y |X) = 0. This means there is no uncertainty in Y once X
is observed and hence H(Y |X) = 0.
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Now we are ready to present and prove the Fano inequality in information theory. Let X be
random variable on a finite set X . Assume we observe a different random variable Y , and want to
estimate Q [Ψ(Y ) 6= X], where Q is the joint distribution of X and Y , and Ψ(·) is a test function.

Lemma 9.13 (Fano inequality) We have

Q [Ψ(Y ) 6= X] ≥ H(X|Y )− log 2

log |X | . (9.6)

Proof: Let E be the random variable such that E = 1 if Ψ(Y ) 6= X and E = 0 otherwise. The
proof follows by expanding H(X,E|Y ) in two different ways given in 2 of Lemma 9.12.

Letting h = −p log p− (1− p) log(1− p), we have

H(X,E|Y ) = H(E|Y ) +H(X|E, Y )

= H(E|Y )︸ ︷︷ ︸
≤H(E)

+Q [E = 1]H(X|E = 1, Y )︸ ︷︷ ︸
≤Q[E=1] log(|X |−1)

+Q [E = 0]H(X|E = 0, Y )︸ ︷︷ ︸
=0

≤ h (Q [Ψ(Y ) 6= X]) + Q [Ψ(Y ) 6= X] log(|X | − 1),

where we have used the fact that conditioned on E = 1, Y = y, X can only take |X | − 1 possible
values and conditioned on E = 0, Y = y, X = Ψ(y) is deterministic. On the other hand,

H(X,E|Y ) = H(X|Y ) +H(E|X,Y ) = H(X|Y ),

where H(E|X,Y ) = 0 due to 6 of Lemma 9.12. Combining the above two inequalities together and
further noting h(p) ≤ log 2 for all p ∈ [0, 1] concludes the proof.

9.4.2 Fano Lower Bound on Minimax Risk

Recall that the minimax risk can be lower bounded by Φ(δ) infΨ Q
[
Ψ(ZJ) 6= J

]
, where the random

variable ZJ is generated by first sampling J uniformly from [m] = {1, · · · ,m} and then generating
ZJ according to Pnj (here Pnj , j = 1, · · · ,m are the product distributions which corresponds to the

2δ-separated set {θj}mj=1), see Section 9.1 for details. Intuitively, Q
[
Ψ(ZJ) 6= J

]
should relate to

the dependence between ZJ and J . For example, if ZJ is independent of J , it would be impossible
to tell J from ZJ . Since I(ZJ , J) provides one way to characterize the dependence between ZJ and
J in terms of the KL divergence, it is reasonable to bound Q

[
Ψ(ZJ) 6= J

]
by I(ZJ , J) and then

provide a minimax lower bound based on it. Indeed, we have the following theorem.

Theorem 9.14 Under the setting for the construction of J and ZJ in Section 9.1, we have

Mn(Θ) ≥ Φ(δ)

(
1− I(ZJ , J) + log 2

logm

)
. (9.7)

Proof: It suffices to show that

Q
[
Ψ(ZJ) 6= J

]
≥ 1− I(ZJ , J) + log 2

logm
. (9.8)

To this end, letting X = J and Y = ZJ in (9.6) and further noting H(J |ZJ) = H(J)− I(ZJ , J) =
logm− I(ZJ , J) shows (9.8).

In order to apply Theorem 9.14, we need to further upper bound I(ZJ , J). The local Fano
method and global Fano method establish the lower minimax risk bound by upper bounding
I(ZJ , J) in different ways.
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9.4.3 Local Fano Method

The mutual information can be written in terms of the component distributions {Pnj }mj=1 and the

mixture distribution QZ = 1
m

∑m
j=1 Pnj as follows

I(ZJ , J) =
1

m

m∑

j=1

D(Pnj ‖QZ). (9.9)

Letting pnj (x1, · · · , xn) be the density of Pnj under some base measure µ(dx1 · · · dxn) and noting

that 1
m is the density of QJ under the counting measure µ(dj), the density of the joint distribution

Q under the base measure µ(dx1 · · · dxn) µ(dj) is given by 1
mp

n
j (x1, · · · , xn), and the density of QZ

is given by 1
m

∑m
j=1 p

n
j (x1, · · · , xn). Thus a simple calculation yields,

I(ZJ , J) =

∫

Xn×[m]

1

m
pnj (x1, · · · , xn) log

1
mp

n
j (x1, · · · , xn)(

1
m

∑m
i=1 p

n
i (x1, · · · , xn)

)
1
m

µ(dx1 · · · dxn)µ(dj)

=
1

m

m∑

j=1

∫

Xn

pnj (x1, · · · , xn) log
pnj (x1, · · · , xn)(

1
m

∑m
i=1 p

n
i (x1, · · · , xn)

)µ(dx1 · · · dxn)

=
1

m

m∑

j=1

D(Pnj ‖QZ),

which proves (9.9). Indeed, the above derivation can be interpreted using

I(ZJ , J) = H(ZJ)−H(ZJ |J).

In addition, we have

D(Pnj ‖QZ) = D(Pnj ‖
1

m

m∑

i=1

Pni )

=

∫

Xn

pnj (x1, · · · , xn) log
pnj (x1, · · · , xn)

1
m

∑m
i=1 p

n
i (x1, · · · , xn)

µ(dx1 · · · dxn)

= −
∫

Xn

pnj (x1, · · · , xn) log
1
m

∑m
i=1 p

n
i (x1, · · · , xn)

pnj (x1, · · · , xn)
µ(dx1 · · · dxn)

≤ 1

m

m∑

i=1

∫

Xn

pnj (x1, · · · , xn) log
pnj (x1, · · · , xn)

pni (x1, · · · , xn)
µ(dx1 · · · dxn)

=
1

m

m∑

i=1

D(Pnj ‖Pni ),

where the fourth line follows from the Jensen inequality. Inserting this inequality into (9.9) yields

I(ZJ , J) ≤ 1

m2

m∑

j,i=1

D(Pnj ‖Pni ). (9.10)

Therefore, we have the following proposition.

11



Proposition 9.15 Under the setting for the construction of J and ZJ in Section 9.1, we have

Mn(Θ) ≥ Φ(δ)

(
1−

1
m2

∑m
j,i=1D(Pnj ‖Pni ) + log 2

logm

)
. (9.11)

To apply the bound in (9.11), we need to construct a family of distributions {Pj}mj=1 corre-
sponding to {θj}mj=1 such that

• ρ(θj , θ`) ≥ 2δ, and m can be as large as possible,

• D(Pnj ‖Pni ) is sufficiently small.

Due to the second constraint, we cannot construct a packing of the entire space Θ; otherwise,
maxi,j D(Pnj ‖Pni ) would be large. Instead, the local Fano method construct a packing of local subset
by first construct a packing set of a fixed radius and then shrinking the packing sets by δ, which
leaves the packing number unchanged but gives us the room to choose a δ that is sufficiently small

such that D(Pnj ‖Pni ) can be sufficiently small and 1−
1

m2

∑m
j,i=1D(Pn

j ‖Pn
i )+log 2

logm is larger than a small
constant. Let illustrate this with two examples.

Example 9.16 We consider the mean estimation of multivariate normal distributions (in contrast
to Example 9.7) N (θ, σ2Id), where θ ∈ Rd. It is not hard to show that the mean squared error of

the sample mean estimator is of the order dσ2

n (check this!). In this example we will show that

the minimax risk of the means squared error is & dσ2

n
To this end, let {x1, · · · , xm} be a 1/2 packing of the unit `2-ball with logm ≥ d log 2. Define

θj = 4δxj. Then it is trivial that ‖θi − θj‖2 ≥ 2δ and ‖θi − θj‖2 ≤ 8δ. In addition, we have

D(Pnj ‖Pni ) = nD(Pj‖Pi) = nD(N (θj , σ
2Id)‖N (θi, σ

2Id)) =
n

2σ2
‖θj − θi‖22 ≤

32nδ2

σ2
.

It follows that

1
m2

∑m
j,i=1D(Pnj ‖Pni ) + log 2

logm
≤

32nδ2

σ2 + log 2

d log 2
. 1

2
,

if we choose δ2 � d
nσ

2. Thus, we conclude that

inf
θ̂

sup
θ∈Rd

E
[
‖θ̂ − θ‖22

]
& dσ2

n
.

Example 9.17 Consider the model Y = Aθ∗ +w, where A ∈ Rn×d is fixed and rank(A) = d, and
w ∼ N (0, σ2In). We want to lower bound the minimax risk when estimating θ∗ from Y under the
(semi)metric

ρ(θ, θ′) =
‖A(θ − θ′)‖2√

n
.

Define the set S = {x ∈ range(A) : ‖x‖2 = 1}. We can construct a 1/2-packing of S with the
packing number m satisfying logm ≥ d log 2. Let {x1, · · · , xm} denote the packing set, the goal is

12



to construct a set {θ1, · · · , θm} such that ρ(θi, θj) ≥ 2δ. To this end, define θj to be the vector such
that Aθj = 4δ

√
nxj. Then, it is easy to verify that

ρ(θi, θj) =
‖A(θi − θj)‖2√

n
= 4δ‖xi − xj‖2,

and consequently, 2δ ≤ ρ(θi, θj) ≤ 8δ.
Note that the observations Y = (Y1, · · · , Yn) ∼ N (Aθ, σ2In). By the divergence property of

multivariable Gaussian distribution, we have

D(Pnj ‖Pni ) =
1

2σ2
‖A(θj − θi)‖22 ≤

32nδ2

σ2
.

It follows that

1
m2

∑m
j,i=1D(Pnj ‖Pni ) + log 2

logm
≤

32nδ2

σ2 + log 2

d log 2
. 1

2
,

if we choose δ2 � d
nσ

2. Thus, we conclude that

inf
θ̂

sup
θ∈Rd

E

[
‖A(θ̂ − θ)‖22

n

]
& dσ2

n
.

This bound is sharp in order which can be achieved for example by the least-squares estimator
(check this!).

9.4.4 Global Fano Method

Recall from (9.9) that

I(ZJ , J) =
1

m

m∑

j=1

D(Pnj ‖QZ), QZ =
1

m

m∑

j=1

Pnj .

Thus, if we can construct a packing of Pn in terms of the KL divergence, it is likely to bound
I(ZJ , J) using the packing of the all the distributions. This leads to the global Fano method, also
known as Yang-Barron method.

Lemma 9.18 Let NKL be the ε-covering number of Pn under the square root KL divergence. Then
we have

I(ZJ , J) ≤ inf
ε>0

{
ε2 + logNKL

}
. (9.12)

Proof: We first claim that

1

m

m∑

j=1

D(Pnj ‖QZ) ≤ 1

m

m∑

j=1

D(Pnj ‖Q), for any Q.

That is, the average distribution minimizes the KL divergence. Indeed, we have

1

m

m∑

j=1

D(Pnj ‖QZ) =
1

m

m∑

j=1

EPn
j

[
log

dPnj
dQZ

]
=

1

m

m∑

j=1

EPn
j

[
log

(
dPnj
dQ

dQ
dQZ

)]
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=
1

m

m∑

j=1

EPn
j

[
log

dPnj
dQ

]
+

1

m

m∑

j=1

EPn
j

[
log

dQ
dQZ

]

=
1

m

m∑

j=1

EPn
j

[
log

dPnj
dQ

]
− EQZ

[
log

dQZ

dQ

]

≤ 1

m

m∑

j=1

EPn
j

[
log

dPnj
dQ

]
.

=
1

m

m∑

j=1

D(Pnj ‖Q).

Consequently,

I(ZJ , J) ≤ 1

m

m∑

j=1

D(Pnj |Q) ≤ max
j=1,··· ,m

D(Pnj |Q)

for any Q. Thus, it suffices to obtain a bound by a particular Q.
To this end, let {Q1, · · · ,QN} be a ε-net of Pn under the square-root KL distance and define

Q = 1
N

∑N
k=1 Qk. By construction, there exists a Qkj such that D(Pnj ‖Qkj ) ≤ ε2. Then,

D(Pnj ‖Q) = EPn
j

[
log

dPnj
dQ

]

= EPn
j

[
log

dPnj
1
N

∑N
k=1 dQk

]

≤ EPn
j

[
log

dPnj
1
N dQkj

]

≤ ε2 + logN.

Since this bound holds for any Pnj and any ε > 0, the claim follows.

Combing Lemma 9.18 with Theorem 9.14 yields the following proposition.

Proposition 9.19 Under the setting for the construction of J and ZJ in Section 9.1, we have

Mn(Θ) ≥ Φ(δ)

(
1−

(
ε2 + logNKL

)
+ log 2

logm

)
. (9.13)

Recall that m in (9.13) is the number of θj such that ρ(θi, θj) ≥ 2δ, so it relies on δ and when δ
is prescribed we may choose {θj}mj=1 to be global packing of Θ so that m is maximized. Note that
there are two parameters ε and δ to be determined in (9.13). A typical way to choose them is

• choose ε such that ε2 ≥ logNKL,

• choose largest possible δ such that logm ≥ 4ε2 + 2 log 2,

so that 1− (ε2+logNKL)+log 2

logm ≥ 1
2 .
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Example 9.20 Consider the family of density functions

F = {f : [0, 1]→ [c0, c1] : ‖f ′′‖∞ ≤ c2 and

∫ 1

0
f(x)dx = 1},

where 0 < c0 < 1 < c1, c2 > 1 are constants. We study the minimax risk of estimating a density
function from i.i.d data X1, · · · , Xn ∼ Pf under the Hellinger distance

ρ(f, g) = H(f‖g) := H(Pf‖Pg) =

√∫ 1

0

(√
f(x)−

√
g(x)

)2
dx.

Note that

D(Pf‖Pg) =

∫ 1

0
f(x) log

f(x)

g(x)
dx

≤
∫ 1

0
f(x)

(
f(x)

g(x)
− 1

)
dx

=

∫ 1

0

(f(x)− g(x))2

g(x)
dx

≤ 1

c0

∫ 1

0
(f(x)− g(x))2dx,

and

ρ(f, g)2 =

∫ 1

0

(√
f(x)−

√
g(x)

)2
dx

≤ 1

4c2
0

∫ 1

0

(√
f(x)−

√
g(x)

)2 (√
f(x) +

√
g(x)

)2
dx

=
1

4c2
0

∫ 1

0
(f(x)− g(x))2 dx.

Therefore, both the squared KL divergence and ρ(·, ·) can be bounded by the L2 distance. Conse-
quently, in order to apply the global Fano method, we only need to understand the metric entropy
in the L2-norm. Since f ∈ F is second order smooth with ‖f ′′‖∞ ≤ c2, it can be shown that (See
Example 5.11 of [1]),

logN(F , ‖ · ‖2, α) �
(

1

α

)1/2

.

Since D(Pnf‖Png ) = nD(Pf‖Pg),
√
D(Pnf‖Png ) ≤ ε if

√
D(Pf‖Pg) ≤ ε/

√
n. It follows that,

logNKL �
(√

n

ε

)1/2

Thus, in order for ε2 ≥ logNKL, we may choose ε2 � (n)
1
5 . Moreover, since logm �

(
1
δ

)1/2
, for

the above choice of ε, we may choose δ � n−
2
5 such that logm ≥ 4ε2 + 2 log 2. Finally, it can be

concluded that

inf
f̂

sup
f
H2(f̂‖f) & n−

4
5 .
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